
T

Teaching Software Design
Techniques in University
Courses

Jonathan D. Holmes1, Kevin R. Parker1,
Bill Davey2 and Joseph T. Chao3
1Department of Informatics and Computer
Science, Idaho State University, Pocatello, ID,
USA
2RMIT University,
Melbourne, Australia
3Department of Computer Science, Bowling
Green State University, Bowling Green, OH,
USA

Synonyms

Architectural pattern; Design pattern;
Development environment; Framework;
Software architectural structures; Software
architecture; Software design techniques

Definition

Software design techniques focus on reusable
software architectural structures such as frame-
works and design patterns used to facilitate soft-
ware development. Software design techniques
go well beyond both programming best practices
and software design guidelines like cohesion and
coupling.

Introduction

Large scale reuse of software architectures and
detailed design are made possible through the
use of design patterns and frameworks, respec-
tively. Design patterns support reuse of software
architecture and design, while frameworks sup-
port reuse of detailed design and code (Crawford
et al. 2006).

Any academic program responsible for teach-
ing software design concepts must continually
seek approaches by which to improve the ways
in which students are prepared for the work force.
Software design concepts such as design patterns
and frameworks are often underemphasized in
information systems and computer science curric-
ula. “Textbooks frequently take the approach of
demonstrating how to use a particular library or
toolkit, spending little time discussing the struc-
ture of the program or architectural patterns like
MVC” (Hanson and Fossum 2005, p. 120). The IS
2010 Curriculum Guidelines (Topi et al. 2010)
state that graduates of undergraduate IS programs
should be experts in high-level design of enter-
prise architecture. “Although the knowledge and
skills that IS graduates need have recently moved
significantly in the direction toward higher levels
of abstraction, individual skills related to design
and implementation are still essential for IS
graduates” (Topi, p. 20). The Computer Science
Curriculum (ACM 2013) guideline includes eight
core hours dedicated to design topics such as
design patterns, software architecture, structured

© Springer Nature Switzerland AG 2019
A. Tatnall (ed.), Encyclopedia of Education and Information Technologies,
https://doi.org/10.1007/978-3-319-60013-0_132-1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-60013-0_132-1&domain=pdf
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Architectural pattern
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Design pattern
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Development environment
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Framework
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Software architectural structures
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Software architecture
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Software architecture
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Software design techniques
https://doi.org/10.1007/978-3-319-60013-0_132-1


design, and object-oriented design, but many
programs fail to adequately emphasize each of
those topics.

Students are often so focused on learning
programming language syntax that they fail to
see the big picture of applying that language
to solving real problems (Hundley 2008).
Development of their problem-solving skills
takes a back seat to learning the minutia of a
language. Thus, when students take a course
in which design topics are covered, instead of
focusing solely on those design topics, the instruc-
tor must spend valuable time introducing students
to the concepts associated with designing a large
system.

Review of Design Patterns, Frameworks,
and MVC

Design Patterns
One widespread program development paradigm
is the use of design patterns. Design patterns rep-
resent the embodiment of best-practice program-
ming and support reuse of successful software
architecture and design by “capturing the static
and dynamic structures and collaborations of suc-
cessful solutions to problems that arise when
building applications in a particular domain.
Patterns explicitly capture expert knowledge and
design trade-offs and make this expertise more
widely available” (Crawford et al. 2006).

The use of design patterns is a fairly recent
addition to software development. They were
first proposed in an OOPSLA-87 Panel Session
by Cunningham and Beck (1988), who in turn
attribute the idea to the architectural work of
Alexander et al. (1977). The concept went
relatively unnoticed until the seminal piece by
Gamma et al. (1993), in which they formalize
the concept of design patterns and propose a
design pattern template.

The concept of design patterns is elaborated
upon by Astrachan et al. (1998), Hundley
(2008), Reiss (1999), and Wallingford (2002). A
design pattern is a documented solution to
a specific problem used to guide a designer.
It presents the interaction of data and methods in

multiple classes, describes the implementation of
classes and features needed for the interaction,
and offers insight to problems that may arise
in the application. Design patterns are reusable
solutions that designers can apply, with possible
modifications, to an application.

A design pattern is generally defined as a
schema comprised of four parts:

• Name – provides a handle and a vocabulary for
discussion and use of the pattern.

• Problem – provides a context in which the
pattern is applicable.

• Solution – describes the components of
the pattern and their interaction, including
their responsibilities, relationships, and
collaborations.

• Consequences – trade-offs and implications
that arise from adapting the solution to the
problem.

Design patterns are uniquely named and
are written in a consistent format that makes it
possible for designers, developers, and others to
communicate using a common vocabulary
(Khwaja and Alshayeb 2015). They are typically
written in design-pattern specification languages
that document the abstraction detailed in the
design pattern rather than capturing algorithms
and data (Khwaja and Alshayeb 2015).

Over the last two decades, software profes-
sionals have embraced patterns as a means
of recording and sharing expert knowledge for
building software. It seems sensible that students
should be exposed to this approach to design.

Experience often makes the difference
between being a poor and good designer. When
determining a solution to a problem, good
designers rely on prior experience by relating the
problem to those they have previously encoun-
tered. Design patterns are the results of formaliz-
ing this experienced-based knowledge and
document the stereotypical techniques and pro-
gram structures used by veteran programmers.
Each pattern describes a particular scenario with
constraints, motivations, and relationships and
provides a relatively optimum solution to these

2 Teaching Software Design Techniques in University Courses



problems (Tao et al. 2015). Recent studies by
both Hussain et al. (2017) and Gravino and Risi
(2017) found that there is a significant relationship
between design pattern usage and greater software
quality.

Shortly after their seminal conference paper,
the book Design Patterns: Elements of Reusable
Object-Oriented Software was authored by
Gamma et al. (1995). The 4 authors, now known
as the Gang of Four, presented 23 design patterns
for purposes such as object creation, modification,
reuse, implementation, and data sharing. These
are used as the foundations of all other patterns.
These original 23 patterns have since been
expanded upon, but there are three basic patterns
that are especially useful to understand. They are
Singletons, Factories, and Builders.

Singletons
In a singleton design pattern, the instantiation of a
class is restricted within a single object, and that
object can be shared across an entire application.
Singletons are useful when one and only one
persistent instance of an object is needed for the
entire lifetime of an application. The instance of
the object is not created until it is needed. When it
is requested, a single object from the class is
created and kept inside the class itself. This often
is accomplished using a private constructor,
ensuring that the only way to create the object is
from within the class itself. This makes it possible
for the class itself to make sure no more than one
object is ever created.

While similar effects can be attained using a
static class, static classes can have only static
methods, meaning they are purely procedural.
Because the singleton is truly object-oriented, it
offers several advantages. For example, unlike a
static class, a reference to the single instance of a
singleton can be passed as a parameter to other
methods, and that parameter can be treated like
any normal object. Furthermore, a singleton can
implement interfaces, inherit from other classes,
and permit inheritance. While less competent
programmers sometimes use singletons to replace
global variables, this is clearly a narrow or incom-
plete use and often considered poor practice.

A singleton is commonly used when an
application has a set of data that does not change
often but is frequently referenced. Constantly
returning to the data store to retrieve data that
has not changed is inefficient and an extensive
and unnecessary use of resources. Using a single-
ton, we can dramatically decrease the number of
times we retrieve data that has not changed. A
painter’s palette serves as an analogy. It does not
make sense to go back to the paint tube each time
we need a color. Therefore, we would keep an
instantiation of all of the different colored paints
we need on the palette and only refresh themwhen
the paint is “dirty.” Examples may include a list of
user permission roles, organizational categories
(such as gender or age groups), or even a collec-
tion of data access layers for multiple data
sources.

Factories
In a factory design pattern, objects are created
without exposing the creation logic to the client.
The goal is to have a single location where all
instantiations of a class or series of classes are
defined. The objects for these classes cannot be
created on their own; they can only be requested
from the factory class. Using a constructor that has
namespace access modifiers will facilitate this
behavior. Factories create not only consistency
in how objects are created, but it also creates a
single place to go when there are problems. Rather
than scouring your entire project to find each line
of code in which you created a certain object, you
simply go to the factory where it was “assembled”
and fix the problem there. It will now propagate
that fix through your entire solution. The simplest
analogy for a factory is an actual factory. For
example, a factory that makes gears will make a
specific type of gear. If you want one of those
gears, you must request it from that factory,
and it will be made for you. If a problem is
found with that type of gear, it is as simple as
going to the factory and having them fix their
error there, and all future gears from that
factory will no longer have that problem.
Examples for a factory may include a Roster
class that is the only place where new employee

Teaching Software Design Techniques in University Courses 3



objects can be created or a Messaging class where
all messages sent to users are created.

Builders
Youwould use the builder design pattern when the
construction of an object is complex or has a
specific order. Builders are like factories. The
main difference being that the builder pattern is
used to create complex objects with lots of parts
and/or when the order in which the parts are put
together matters; however, factories are for less
complex construction processes. A simple anal-
ogy for a builder could be a construction firm.
For example, if you want a house, you might go
to the construction contractor and request a house.
The house will have lots of parts that they will
need to construct because a house has a lot of
objects that depend on other objects (inter-object
dependencies). The builder’s job is to put all of
these dependent objects together correctly and in
the right order to make this complex object that is
a house. The order matters because you cannot put
the roof on the house before you have erected the
walls, nor can you erect the walls until you have
laid the foundation. An example case for a builder
may be when you need to build a report that
requires particular components of the report to
be retrieved before you can retrieve additional
related data.

Frameworks
Frameworks facilitate reuse of detailed design and
code. “A framework is an integrated set of com-
ponents that collaborate to provide a reusable
architecture for a family of related applications”
(Crawford et al. 2006).

A framework defines a family of related appli-
cations and contains elements that are common to
those applications (Tao 2002). Frameworks pro-
vide structure by enforcing naming conventions
(directories, files) and rules for constructing a
system. They also provide components that
aid in the construction of a system. Application
developers extend the framework to build custom
applications. Thus, a framework is basically a
development environment in which programmers
can develop applications of all types much
easier and faster, including Web applications. A

framework may consist of source code libraries,
utilities, plug-ins, development models, and a
wide range of tools, the purpose of which is to
accelerate the application development pace.

There is a core of recurring themes in most
frameworks (Caspersen and Christensen 2008):

• The framework delivers application behavior
at a high level of abstraction.

• A framework provides functionality within a
well-defined domain, i.e., frameworks address
specific domains like graphical user interfaces,
gaming, insurance, telecommunication, etc.

• A framework defines the interaction patterns
between a set of well-defined components/
objects. In order to use the framework, the
developers are required to understand these
interaction patterns and must program in accor-
dance with them.

• A framework is flexible so that it can be
tailored to a concrete context, provided
that context lies within the domain of the
framework.

• A framework makes possible the reuse of
code as well as reuse of design.

MVC
The Model-View-Controller (MVC) pattern is
probably the most widely known pattern. Rather
than being a design pattern, it is generally agreed
that MVC is an architectural pattern. While design
patterns typically focus on components of a sub-
system and their relationships and collaborations
with each other, architectural patterns focus on the
larger subsystems of an application along with
their relationships and collaborations with each
other. (Note that the preceding clarification can
be found with multiple attributions on the
Internet.)

MVC has proven to be an important architec-
tural pattern for facilitating the development,
debugging, and maintenance of systems. The
origin and details of the MVC are explained by
Tao (2002), Morse and Anderson (2004), and
Hanson and Fossum (2005). It was developed
for Smalltalk-80 at Xerox PARC in the late
1970s as a means of facilitating the development
of systems with graphical user interfaces (GUI).

4 Teaching Software Design Techniques in University Courses



MVC was found to be particularly appropriate in
applications that provide multiple views of the
same data. It has been successfully applied to
the development of client-server and web-based
systems (Gacimartín et al. 2011; Kasik and
Stankus 2010). MVC has been used and adopted
to varying degrees in most GUI class libraries and
application frameworks, and it has become
the central feature of many modern interactive
applications (Morse and Anderson 2004).

The key idea behind the MVC pattern involves
separating user interfaces from the underlying
data represented by the user interface. Thus, the
MVC pattern, as shown in Fig. 1, separates the
three main components of an application: Models,
Views, and Controllers.

• The Model contains the data collected on the
client side as well as application methods to
access and manipulate the data. This includes
both the information represented by the View
and the application’s business logic that
changes this information in response to
user interaction. Data models are typically
databases or XML files. The Model provides
data to the other two components.

• The View is responsible for the visual
display of the application. The View compo-
nent contains scripts that render the View
selection for the user and contains all the
graphical user interface components that

receive input from users. In addition, the
View is responsible for displaying output
created by the Model for the user.

• The Controller dictates how the application
behaves by acting as the primary event handler
that responds to events generated by the user
through the graphical components in the View.
The Controller is the glue between the data
models and the views. It connects the presen-
tation (View) and data layer (Model) to each
other and coordinates activities between them.
Controllers process user input and update the
Model and View appropriately. Every control-
ler has a number of actions, and each action
will, in general, generate a View for the
user. Actions are grouped into controllers
based on some criteria, generally a common
data model or purpose. Every action is
responsible for taking the relevant data, doing
whatever controller-specific processing
needs to be done, then passing it to the View.

In general, the Model manages application
data, the View presents the user interface, and
the Controller handles events for the View.
Separating the internal data models from the inter-
face views that set or display the data allows
models to be represented by a variety of views.
Further, the model’s algorithmic logic is distinct
from the management of the view, thus leading to
a simpler program design.

Teaching Software
Design Techniques in
University Courses,
Fig. 1 MVC patterns
(Chao et al. 2013)

Teaching Software Design Techniques in University Courses 5



The views must maintain their own state, and
there must be communication by which the
models update the views or the views update the
models. Such communication may be initiated by
internal processes or by the user-initiated events.
Events may also trigger internal processes that
result in updates of the models and/or the views.

Encapsulating the three abstractions (Model,
View, and Controller) into separate classes leads
to multiple desirable outcomes:

• The same set of business logic (Model) can be
used with multiple views to provide different
user interfaces for the same underlying
application. These interfaces could include
web interfaces or traditional GUIs, or could
be developed in multiple languages or with
different sets of user permissions.

• The impact of user interface changes is mini-
mized. The application’s “look” can be drasti-
cally altered without modifying data structures
and business logic.

• The reusability of domain objects is increased
(Tao 2002).

• By separating the model from the view and
controller, separate teams of developers can
work on each component, either serially or in
parallel.

• Automated test harnesses can be used to per-
form extensive unit testing on the business
logic without tedious testing of the GUI.

The MVC pattern has proven to be very
useful in industry and also can be effectively
used in student projects using either traditional
or object-oriented methodologies. Web applica-
tions, mobile applications, and other interactive
software systems can benefit by being designed
with the MVC pattern logic.

Benefits of Patterns and Frameworks

The motivation for using design patterns and
frameworks is explained by Ali et al. (2011),
Gamma et al. (1993), Vuksanovic and Sudarevic
(2011), and Wick (2001).

Little software of any consequence is devel-
oped using only a programming language. With
the emergence of modern software development
methodologies and related frameworks, many
developers began to harness their advantages,
such as faster development, enhanced security,
availability of useful and standardized libraries,
simpler organization of work in development
teams, and clearer structure of code due to strict
conventions and use of patterns that encourage
separation of domain logic, user interface, and
the data processing model.

Design patterns have become an extremely
effective tool with which to solve software devel-
opment problems because they represent lan-
guage and application independent solutions
to commonly occurring design problems.
Developers familiar with design structures can
apply them immediately to design problems with-
out having to rediscover them. Less experienced
software developers can benefit from design
patterns by taking advantage of the lessons and
outcomes learned by more experienced devel-
opers. Design patterns also facilitate the reuse of
successful architectures, because expressing
proven techniques as design patterns makes
them more readily accessible to other developers.

Most commercial software is developed using
a framework by extending and customizing the
default, generic functionality that it provides.
Thus, frameworks not only help in understanding
and constructing real-world applications but
also provide additional reusability of both
design and implementation. Frameworks offer
numerous technical and organizational advan-
tages over classical development methods, such
as faster development and cleaner application
structure. In addition, programming using
frameworks is more comfortable for developers,
since frameworks provide for many common
programming tasks.

The use of frameworks reduces time spent on
code maintenance and future development in
many ways:

• Frameworks provide numerous libraries
and helpers, making it possible for developers

6 Teaching Software Design Techniques in University Courses



to achieve comparable functionality with
less code, so the software is more easily
maintainable.

• Software unit testing, defined as a process that
includes the performance of test planning, the
acquisition of a test set, and the measurement
of a test unit against its requirements (IEEE
1986), is facilitated by the framework rather
than performed manually.

• Those tasked with software maintenance will
require significantly less time deciphering
existing code developed via a framework,
thanks to the Model-View-Controller pattern
and other coding conventions.

• Future improvements, such as protection
measures against future hacking attack
techniques and yet unknown vulnerabilities,
may be addressed by future releases of
the framework and thus may only require
upgrading the framework to a newer version.

Additional Applications of Patterns and
Frameworks

While patterns and frameworks improve software
quality, they can also be used to address specific
needs. Esakia and McCrickard (2016) discuss
the use of patterns and frameworks in the devel-
opment of mobile apps. Prabhakar et al. (2017)
show that the use of various design patterns in the
development of various components of data
mining applications can improve quality attributes
such as reusability, maintainability, extensibility,
adaptability, and performance. Colesky et al.
(2013) and Van Niekerk and Futcher (2015)
explore how design patterns can play a role in
introducing security during the groundwork of
applications by influencing coding habits
of developers. Suphakul and Senivongse (2017)
discuss the use of privacy design patterns for the
development of privacy-aware applications. A
large variety of additional applications for
patterns and frameworks can be discovered
with an Internet search.

Motivation for Teaching Design
Concepts Via Frameworks

One of the most beneficial aspects of design pat-
terns is their educational nature. Creating a design
pattern requires a high degree of explicitness.
Wallingford (2002, p. 152) explains:

Writing a pattern requires the author to state
explicitly the context in which a technique applies
and to state explicitly the design concerns and
trade-offs involved in implementing a solution.
These elements of a pattern provide significant
benefits to the reader, who can not only study the
technique that defines a solution but also explore
when and how to use it.

Astrachan et al. (1998, p. 153) assert that
“patterns are an essential programming and
pedagogical tool.” Wallingford (2002) agrees,
calling for further studies into ways in which to
use patterns effectively in teaching.

Christensen and Casperson strongly advocate
frameworks in teaching, and provide many
convincing arguments for their use topic
(Caspersen and Christensen 2008; Christensen
2004; Christensen and Caspersen 2002). The pro-
gramming context faced by most programmers
today is radically different from the one that
existed a decade and a half ago. Being a successful
developer is no longer a question of being a good
programmer, but just as much a question of under-
standing complex interaction patterns in frame-
works and being able to design in accordance
with their guidelines. Developing any realistic
software requires the ability to identify proper
software frameworks to reuse as well as the skill
to write the specialized code for the task at hand.

This means that we need to teach new skills to
our students in addition to the old ones. Writing
even a simple program that has a graphical user
interface using a framework is radically different
from traditional approaches. The event-driven
protocol in a framework requires students to
understand the complex interplay between
framework code and their own code. Students
must be adequately trained to make software
reuse their first development option.

Teaching Software Design Techniques in University Courses 7



While the main motivation for teaching
frameworks focuses on the obvious need to
teach students about the techniques that govern
modern software development, there are addi-
tional pedagogical aspects that make frameworks
a worthwhile.

• Student motivation: If students must program
everything from scratch, then the workload and
complexity rule out developing software that
in any respect compares to the sophisticated
and appealing programs that they are used to
from, for example, the Windows platform.
However, a framework used in the classroom
defines the skeleton of an application that can
be customized by an application developer and
can provide the “bells and whistles” that makes
the effort invested by the student look more
appealing or “professional.” The “return on
investment” is simply greater for the student.

• Setting an example: A well-designed frame-
work can serve as an exemplary use of design
patterns by making it clear that design patterns
work together and that patterns really define
roles.

• Gentler learning curve: Simple frameworks
can illustrate basic concepts in framework the-
ory and practice in a gentle way as stepping
stone for learning more complex GUI frame-
works. It is important that students learn the
basic concepts and techniques relating to
frameworks.

• Developing is a reuse business: Students must
learn that software development entails more
than producing code but also involves locating
and incorporating reusable assets. Frameworks
illustrate many design patterns and reinforce
the concept that patterns express roles in a
collaboration pattern rather than objects that
are to be copied into a design. Frameworks
exemplify the reuse of design as well as code,
whereas design patterns demonstrate only
design reuse. Thus, they serve to strengthen
the concept of programming as a process of
reuse as well as coding.

• Workforce ready: Frameworks have already
made an impact on how industrial software is
developed in a cost efficient and reliable way.
Graduates should be familiar with the basic

concepts and techniques relating to frame-
works. Further, students are better prepared
for the workforce when exposed to commercial
tools.

• Object concepts. Frameworks utilize best
practices of object-oriented programming.
Requiring students to read and understand
parts of frameworks will provide them with
important insights in how to structure complex
systems in a master-apprentice fashion.

• Responsibility-driven design: An MVC
framework is an excellent example of how
responsibility-driven design influences the
identification of classes and the assignment of
responsibilities to those classes. While many
students have an initial expectation that the
GUI should be integrated with the data since
they are so closely related, anMVC framework
provides an intuitive and concrete example
of how the separation of manipulation and
display can result in a powerful and flexible
software design (Wick 2001).

Tao et al. (2015) suggest a reasonable set of
learning outcomes for teaching patterns and
frameworks:

• Gain basic knowledge and understanding of
the concept of software architecture, including
frameworks and design patterns.

• Become familiar with multiple widely used
patterns and get hands-on experience develop-
ing simple applications to illustrate learned
patterns.

• Develop the ability to consciously apply
proper patterns in future software design
efforts.

Summary

Several studies have made the case that current
curricula neglect design patterns, architectural
patterns, and frameworks. While many studies
have established the benefits of patterns and
frameworks, there is a need for additional
research to find ways in which to incorporate
these in teaching.

8 Teaching Software Design Techniques in University Courses



There are many benefits to incorporating pat-
terns and frameworks in the classroom. By intro-
ducing students to patterns and frameworks
during their education, they gain not only an
appreciation for design concepts like separating
the user interface from the underlying data and
logic but also exposure to commercial software
tools that enhances their future marketability.

References

ACM/IEEE-CS Joint Task Force on Computing Curricula
(2013) Computer Science Curricula 2013. ACM Press
and IEEE Computer Society Press. https://doi.org/
10.1145/2534860

Alexander C, Ishikawa S, Silverstein M (1977) A pattern
language. Oxford University Press, Oxford

Ali Z, Bolinger J, Herold M, Lynch T, Ramanathan J,
Ramnath, R (2011) Teaching object-oriented software
design within the context of software frameworks.
In: Proceedings of the 41st annual ASEE/IEEE
frontiers in education conference, pp 1–5. http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3
00.7477&rep=rep1&type=pdf

Astrachan O, Berry G, Cox L, Mitchener G (1998)
Design patterns: An essential component of CS
curricula. In: Proceedings of the twenty-ninth SIGCSE
Technical symposium on Computer science education,
pp 153–160. http://www.cs.duke.edu/~ola/papers/pat
terns.pdf

Caspersen ME, Christensen HB (2008) Frameworks
in teaching. In: Bennedsen J, Caspersen ME,
Kölling M (eds) Reflections on the teaching of pro-
gramming methods and implementations. Springer-
Verlag, Heidelberg, pp 190–205

Chao JC, Parker KR, Davey B (2013) Navigating the
framework jungle for teaching web application
development. J Issues Inf Sci Inf Technol 10:95–109.
https://doi.org/10.28945/1798. http://iisit.org/Vol10/II
SITv10p095-109Chao0092.pdf

Christensen HB (2004) Frameworks: putting design pat-
terns into perspective. In: Proceedings of the 9th annual
SIGCSE conference on innovation and technology in
Computer science education, pp 142–145. http://www.
daimi.au.dk/~hbc/publication/iticse2004.pdf

Christensen HB, Caspersen ME (2002) Frameworks in
CS1 – a different way of introducing event-driven
programming. In: Proceedings of the 7th annual con-
ference on innovation and technology in Computer
science education, pp 75–79. http://cs.au.dk/~mec/pub
lications/conference/03%2D%2Diticse2002.pdf

Colesky M, Futcher L, Van Niekerk J (2013) Design pat-
terns for secure software development: demonstrating
security through the MVC pattern. In: Proceedings of
the 15th annual conference on WWW applications.
Cape Town, pp 10–13

Crawford B, Castro C, Monfroy E (2006) Knowledge
management in different software development
approaches. In: Yakhno T, Neuhold EJ (eds) Advances
in information systems. ADVIS 2006. Lecture notes in
computer science, vol 4243. Springer, Berlin, pp
304–313

Cunningham W, Beck K (1988) Using a pattern language
for programming. Addendum to the Proceedings of
OOPSLA’87, ACM SIGPLAN Notices, 23, 5

Esakia A, McCrickard DS (2016) An adaptable model for
teaching mobile app development. 2016 IEEE frontiers
in education conference. Erie, 2016, pp 1–9. https://doi.
org/10.1109/FIE.2016.7757478

Gacimartín C, Hernández J, Larrabeiti D (2011) A mid-
dleware architecture for designing TV-based adapted
applications for the elderly. In: Jacko J (ed) Human-
computer interaction. Design and development
approaches, vol 6761. Springer-Verlag, Heidelberg,
pp 443–449

Gamma E, Helm R, Johnson R, Vlissides J (1993) Design
patterns: abstraction and reuse of object-oriented
design. In: Proceedings of the 7th European conference
on object-oriented programming, pp 406–431. http://
www.cs.pitt.edu/~mock/cs1530/lectures2/ecoop93-pat
terns.pdf

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design
patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, Indianapolis

Gravino C, Risi M (2017) How the use of design patterns
affects the quality of software systems: a preliminary
investigation. In: 2017 43rd Euromicro conference on
software engineering and advanced applications
(SEAA) IEEE, pp 274–277. https://doi.org/10.1109/
SEAA.2017.32

Hanson S, Fossum TV (2005) Refactoring model-view-
controller. J Comput Sci Coll 21(1):120–129. http://
www.cs.uwp.edu/staff/hansen/publications/StopWatch
/mvc.ccsc.pdf

Hundley J (2008) A review of using design patterns in
CS1. In: Proceedings of the 46th. Annual southeast
regional conference on XX, pp 30–33

Hussain S, Keuung J, Khan AA (2017) The effect of Gang-
of-Four design patterns usage on design quality
attributes. In: 2017 IEEE international conference on
software quality, reliability and security (QRS). IEEE,
pp 263–273. https://doi.org/10.1109/QRS.2017.37

IEEE (1986) IEEE standard for software unit testing. http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
27763

Kasik V, Stankus M (2010) Graphical development system
design for creating the FPGA-based applications in
biomedicine. In: Bamidis PD, Pallikarakis N (eds) XII
Mediterranean conference on medical and biological
engineering and computing 2010, vol 29. Springer-
Verlag, Heidelberg, pp 879–882

Khwaja S, Alshayeb M (2015) Survey on software design-
pattern specification languages. ACM Comput Surv 49
(1):1–35. https://doi.org/10.1145/2926966

Teaching Software Design Techniques in University Courses 9

https://doi.org/10.1145/2534860
https://doi.org/10.1145/2534860
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.300.7477&rep=rep1&type=pdf%20
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.300.7477&rep=rep1&type=pdf%20
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.300.7477&rep=rep1&type=pdf%20
http://www.cs.duke.edu/~ola/papers/patterns.pdf
http://www.cs.duke.edu/~ola/papers/patterns.pdf
https://doi.org/10.28945/1798
http://iisit.org/Vol10/IISITv10p095-109Chao0092.pdf
http://iisit.org/Vol10/IISITv10p095-109Chao0092.pdf
http://www.daimi.au.dk/~hbc/publication/iticse2004.pdf
http://www.daimi.au.dk/~hbc/publication/iticse2004.pdf
http://cs.au.dk/~mec/publications/conference/03%2D%2Diticse2002.pdf
http://cs.au.dk/~mec/publications/conference/03%2D%2Diticse2002.pdf
https://doi.org/10.1109/FIE.2016.7757478
https://doi.org/10.1109/FIE.2016.7757478
http://www.cs.pitt.edu/~mock/cs1530/lectures2/ecoop93-patterns.pdf
http://www.cs.pitt.edu/~mock/cs1530/lectures2/ecoop93-patterns.pdf
http://www.cs.pitt.edu/~mock/cs1530/lectures2/ecoop93-patterns.pdf
https://doi.org/10.1109/SEAA.2017.32
https://doi.org/10.1109/SEAA.2017.32
http://www.cs.uwp.edu/staff/hansen/publications/StopWatch/mvc.ccsc.pdf
http://www.cs.uwp.edu/staff/hansen/publications/StopWatch/mvc.ccsc.pdf
http://www.cs.uwp.edu/staff/hansen/publications/StopWatch/mvc.ccsc.pdf
https://doi.org/10.1109/QRS.2017.37
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=27763
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=27763
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=27763
https://doi.org/10.1145/2926966


Morse SF, Anderson CL (2004) Introducing application
design and software engineering principles in introduc-
tory CS courses: model-view-controller Java applica-
tion framework. J Comput Sci Coll 20(2):190–201.
http://www.wou.edu/~andersc/pubs/CCSC-NW_2004.
pdf

Prabhakar NP, Rani D, Hari Narayanan AG, Judy MV
(2017) Analyzing the impact of software design pat-
terns in data mining application. In: Dash S,
Vijayakumar K, Panigrahi B, Das S (eds) Artificial
intelligence and evolutionary computations in engi-
neering systems. advances in intelligent systems and
computing, vol 517. Springer, Singapore. https://doi.
org/10.1007/978-981-10-3174-8_7

Reiss SP (1999) A practical introduction to software design
with C++. Wiley, Hoboken

Suphakul T, Senivongse T (2017) Development of privacy
design patterns based on privacy principles and UML.
In: 2017 18th IEEE/ACIS international conference on
software engineering, artificial intelligence, network-
ing and parallel/distributed computing (SNPD). IEEE,
pp 369–375. https://doi.org/10.1109/SEAA.2017.32

Tao Y (2002) Component- vs. application-level MVC
architecture. Frontiers in Education, T2G-7-T2G-10.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10
.1.1.20.5508&rep=rep1&type=pdf

Tao Y, Liu G, Mottok J, Hackenberg R, Hagel G (2015)
Just-in-time-teaching experience in a software design
pattern course. In: 2015 IEEE global engineering

education conference (EDUCON), pp 915–919.
https://doi.org/10.1109/EDUCON.2015.7096082

Topi H et al (2010) IS 2010: Curriculum guidelines for
undergraduate degree programs in information sys-
tems. Report from the joint IS 2010 curriculum task
force. https://www.acm.org/binaries/content/assets/edu
cation/curricula-recommendations/is-2010-acm-final.
pdf

Van Niekerk J, Futcher L (2015) The use of software
design patterns to teach secure software design: an
integrated approach. In: Bishop M, Miloslavskaya N,
Theocharidou M (eds) Information security education
across the curriculum. WISE 2015. IFIP advances in
information and communication technology, vol 453.
Springer, Cham, pp 75–83. https://doi.org/10.1007/
978-3-319-18500-2

Vuksanovic IP, Sudarevic B (2011) Use of web application
frameworks in the development of small applications.
In: Proceedings of the 34th international convention on
information and communication technology, electron-
ics and microelectronics (MIPRO), pp 458–462

Wallingford E (2002) Functional programming patterns
and their role in instruction. In: Proceedings of the
international conference on functional programming,
pp 151–163. http://www.cs.uni.edu/~wallingf/patterns/
papers/fdpe2002/fdpe2002.pdf

Wick MR (2001) Kaleidoscope: using design patterns
in CS1. In: Proceedings of the 32nd SIGCSE
technical symposium on computer science education,
pp 258–262

10 Teaching Software Design Techniques in University Courses

http://www.wou.edu/~andersc/pubs/CCSC-NW_2004.pdf
http://www.wou.edu/~andersc/pubs/CCSC-NW_2004.pdf
https://doi.org/10.1007/978-981-10-3174-8_7
https://doi.org/10.1007/978-981-10-3174-8_7
https://doi.org/10.1109/SEAA.2017.32
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.5508&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.5508&rep=rep1&type=pdf
https://doi.org/10.1109/EDUCON.2015.7096082
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/is-2010-acm-final.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/is-2010-acm-final.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/is-2010-acm-final.pdf
https://doi.org/10.1007/978-3-319-18500-2
https://doi.org/10.1007/978-3-319-18500-2
http://www.cs.uni.edu/~wallingf/patterns/papers/fdpe2002/fdpe2002.pdf
http://www.cs.uni.edu/~wallingf/patterns/papers/fdpe2002/fdpe2002.pdf

	132-1: 
	Teaching Software Design Techniques in University Courses
	Synonyms
	Definition
	Introduction
	Review of Design Patterns, Frameworks, and MVC
	Design Patterns
	Singletons
	Factories
	Builders

	Frameworks
	MVC

	Benefits of Patterns and Frameworks
	Additional Applications of Patterns and Frameworks
	Motivation for Teaching Design Concepts Via Frameworks
	Summary
	References


