
P

Programming Language
Selection for University
Courses

Kevin R. Parker1, David V. Beard1 and
Bill Davey2
1Department of Informatics and Computer
Science, Idaho State University, Pocatello, ID,
USA
2RMIT University, Melbourne, VIC, Australia

Synonyms

Algorithmic language; Computer language;
Computer programming; Computer-oriented
language; Computing language; Software
development

Definition

Programming language selection refers to the pro-
cess of choosing a language for use in the initial
programming courses in an academic curriculum.

Introduction

The choice of pedagogical programming lan-
guages for introductory or advanced computer

science, information systems, or informatics
courses is a major decision that requires consider-
able thought because the programming language
used in a teaching environment can significantly
impact not only how courses are taught but also
their effectiveness.

An ideal situation would be a single language
that could be used to cover all needed paradigms
and topics in at least the first one or two program-
ming courses rather than using different languages
in each course. Kummerfeld and Kay (2003, p.
105) note that “students using an unfamiliar
or new programming language waste consider-
able time correcting syntax errors.” In the authors’
experience, it can take 4 or more weeks of lectures
and coding exercises to teach students a second
programming language, course time that could
be used to cover other essential topics.

This entry examines aspects of academic
programming language selection with the goal
of aiding academics in choosing a language that
will meet the needs of their curriculum. A sound
choice will both provide a solid introduction
to basic programming skills and quickly elevate
those skills to a level at which informatics, soft-
ware engineering, and computer science majors
can be more effective in subsequent computing
courses.

We start by considering the language selection
decision-making process that an academic pro-
gram needs to conduct, detailing a number of
factors and external pressures that faculty might
need to consider. Finally, we touch on some

© Springer Nature Switzerland AG 2019
A. Tatnall (ed.), Encyclopedia of Education and Information Technologies,
https://doi.org/10.1007/978-3-319-60013-0_131-1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-60013-0_131-1&domain=pdf
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Algorithmic language
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Computer language
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Computer programming
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Computer-oriented language
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Computer-oriented language
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Computing language
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Software development
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Software development
https://doi.org/10.1007/978-3-319-60013-0_131-1

emerging trends that may affect choices and
changes in coming years.

The History of Language Selection

In 1978 the ACM Special Interest Group on Pro-
gramming Languages (SIGPLAN) sponsored a
conference on the History of Programming Lan-
guages (HOPL), during which it was proposed
that language importance should be assessed
based on the following criteria: (1) the language
has been in use for at least 10 years, (2) the
language has significant influence, and (3) the
language is still in use (Bergin and Gibson
1996). A study by Soloway et al. (1989) attempted
to find a better match between a language and
an individual’s natural skills and abilities, explor-
ing the relationship between the preferred cogni-
tive strategies of individuals and programming
language constructs.

Howatt (1995) proposed an evaluation
approach for programming languages, with
criteria that included the broad categories of
language design and implementation, human
factors, software engineering, and application
domain. Howland (1997), too, presented an
extensive list of criteria that the author considered
to be important in choosing a language for intro-
ductory computer science instruction but con-
cluded that the selection of a programming
language should be made primarily on the basis
of how well key programming concepts may
be expressed in the language.

The Computing Curricula 1991 recommenda-
tions for the introductory programming course
were examined by King (1992), and he reviewed
the creation of several important languages as
well as the emergence of various programming
paradigms during the 1980s before going on
to propose his own set of criteria for the selection
of programming languages.

By the turn of the century, both the object-
oriented (OO) paradigm and the recognition
of the importance of information security were
greatly impacting language choice. In a study of
language selection for CS1 and CS2 classes,
the Ad Hoc Advanced Placement Computer

Science (AP CS) Committee (2000) noted three
main requirements: emphasis on object orienta-
tion, need for safety in the language and environ-
ment, and a desire for simplicity. Wile (2002)
pointed out that programming language choice
is subject to both technical and social pressures,
including those of the problem domains the
languages are intended to address, the conceptual
and computing models that underlie the designs
of the languages themselves, independent of
their particular problem domains, and the social
and physical contexts in which the languages
are used. Roberts (2004a) observed that an
increasing number of universities were adopting
Java as the programming language for their
introductory course, not only because of the
growth in the popularity of the OO paradigm
but also due to the decision by the College
Board to use Java in the AP CS program. Roberts
(2004b) went on to reflect that two additional
challenges were negatively impacting pedagogy:
(1) the number of programming details that
students must master had grown, and (2) the lan-
guages, libraries, and tools on which introductory
courses depend were undergoing more rapid
change than in the past. Finally, Gee et al. (2005)
noted a divergent trend toward the use of
scripting languages to teach programming con-
cepts because they provide not only a proper
programming environment but also a tool for
the formation of active web pages.

Selection Approaches

Some languages were developed with the intent
of solving problems, while others were designed
to make teaching algorithms easier (Parker and
Davey 2012). This has led to two often conflicting
alternatives about which languages should be
used in university courses: should academics
choose a language that is commonly used in
industry, or should they choose a language
that best supports concept development in
students? Thus, throughout the history of lan-
guage education, there have been two distinct
arguments for language selection: pragmatic
versus pedagogical.

2 Programming Language Selection for University Courses

Pragmatic Approach
The pragmatic approach favors choosing a lan-
guage that will assist students in getting a job
upon graduation. This approach views the lan-
guage selection approach’s most important con-
sideration to be a language’s industry acceptance
as well as the marketability of individuals profi-
cient in its use.

Industry Acceptance
Industry acceptance refers to a language’s market
penetration in industry (Riehle 2003), i.e., the
extent to which a language is used in business
and industry. Sometimes referred to as industrial
relevance, this can be determined based on current
and projected usage, as well as the number of
current and projected positions. Stephenson
(2000) rates this factor as the greatest influence
in language selection, as indicated by 23.5% of
schools participating in his study. Lee and Stroud
(1996) note that real-world acceptability once
had little weight, as indicated by the earlier use
of ALGOL and Pascal, but that attitude seems
to be changing. Their opinion is that students
having an industrially accepted language on their
resume is a significant consideration. A 2001 sur-
vey of all Australian universities indicated that
perceived industry demand was the major factor
in their selection of an introductory language (de
Raadt et al. 2003). King (1992) concurs that many
language decisions are made on the basis
of current or projected future popularity, noting
that there are a number of practical benefits to
choosing a popular language including greater
student motivation to study a language that they
have heard is in demand, as well as a good selec-
tion of books and language implementations
available for more popular languages.

Marketability
Marketability refers to high employability of
graduates. This may include regional, national,
or international marketability, depending on
the placement of a program’s graduates. When
language selection is driven by demand in the
workplace, i.e., what employers want, not only
can that factor into improving the likelihood of
quality future employability, but it can also

increase student enthusiasm when studying a
language if they feel it may improve their employ-
ability (de Raadt et al. 2003).

Language marketability is considered in
several studies. In the census of introductory
programming courses conducted by de Raadt et
al. (2003), the most commonly listed factor in
language selection (by 56% of the participants)
was the desire to teach a language that equips
graduates with marketable skills. Watt (2000)
notes the need for transferable skills that will
be useful in the students’ future careers, while
Emigh (2001) contends that the primary concern
in language evaluation must be the demand in
the workplace and employers’ expectations of
graduates. In fact, graduates’ marketability can
be further enhanced by exposing them to multiple
languages (de Raadt et al. 2003). For example,
a progression from C to C++ to Java will provide
graduates with the qualifications for more
advertised positions than exposure to any single
language in isolation. Extrinsically motivated
students aspiring to a lucrative career may
demand to be taught those tools that are
currently in vogue in the industry, and in such
cases, universities may have to accept that
pedagogical issues in the choice of platform
and language must be secondary to marketability
concerns (Jenkins 2001).

Pedagogical Selection
Many academics question whether industry
trends should drive changes in curriculum and
programming courses as they often seem to
(Smolarski 2003; Mclver and Conway 1996;
Howland 1997). Their stance is that decisions
regarding the language used in an introductory
course should be based on howwell it underscores
fundamental skills that help to make any student-
developed software well-written and error-free as
well as to prepare students for ensuing courses,
rather than on what language is currently favored
by employers (Smolarski 2003).

Avoiding the Complexities of Industrial
Environments
These arguments also bring to the forefront
the possibility that attempting to teach problem

Programming Language Selection for University Courses 3

solving while simultaneously introducing a
professional grade language into the first
course conflict because students are distracted
by difficulties associated with that language and
its environment (Johnson 1995; Jenkins 2002;
Gee et al. 2005; Allison et al. 2002; Kelleher and
Pausch 2005). A language that requires significant
overhead to address even trivial problems forces
the language, rather than the techniques of prob-
lem-solving, to become the object of study (Zelle
1999).

Clear Problem-Solving Principles
A teaching language should be designed in such
a way that it enhances teaching the fundamentals
of basic programming tasks. This is the argument
espoused by Wirth (1993), Kölling et al. (1995)
and many other developers of teaching languages
and is commonly invoked by proponents of the
various “pure” teaching languages. The argument
generally concludes that it is better to adopt a
language not commonly used in industry. Those
sharing this viewpoint favor adopting a teaching
language that promotes conceptual cleanness
and efficiency as well as other instructional
goals, rather than using a real-world production
language whose rich feature set can introduce
unnecessary complexity (Kölling et al. 1995).

Language Selection Process

Common problems that may be faced when
designing an introductory course range from
interdepartmental political squabbles if the course
is a service course to logistical challenges if
the course must accommodate a substantial
number of students (Solntseff 1978). Clearly,
strife surrounding the introductory programming
language course and the language appropriate
for that course has been ongoing for decades
(Smolarski 2003). With no generally accepted
approach for performing the evaluation, the selec-
tion of a programming language for instructional
purposes is often a contentious task. The process
often takes the form of an informal faculty discus-
sion, with various faculty members championing
their preferred language. The process continues

until an eventual consensus is reached or the
dominant faction wears down the opposition.
As the number of faculty, students, and language
options increases, this process becomes increas-
ingly daunting. As it stands, the language selec-
tion process lacks structure and is seldom
replicable (Parker et al. 2006a).

Many of the factors influencing the selection
of a programming language for an introductory
course at one US university is ably discussed in
Smith and Rickman (1976), a study praised for its
“comparable thoroughness” (Solntseff 1978).
Parker et al. (2006a, b) examined over 60 papers
relevant to language selection in academia and
presented their criteria to be used when selecting
a language for programming courses. Their study
resulted in a selection approach that involves
weighting each of those selection criteria based
on its relative importance in each unique selection
process.

Selection Criteria

Several factors should be considered when
selecting a programming language. While differ-
ent curricula place greater emphasis on different
factors, generally all must be considered.

Parker et al. (2006a) compiled an extensive
set of selection criteria and proposed a process
for the application of those criteria to evaluate
various languages to be used in programming
classes. The selection criteria take into account
the programming features of each language
under consideration, the appropriateness of
each of these features for teaching beginning
(and perhaps advanced) programming concepts,
the current and future industry acceptance of
each language, the availability of quality text-
books, the costs associated with adopting each
language, the infrastructure and support implica-
tions of each language, and the impact of the
decision on the tactical and strategic direction of
the department and curriculum. Parker et al.
(2006b) carefully analyzed the preceding selec-
tion criteria. Those with commonalities were
grouped together to produce the programming

4 Programming Language Selection for University Courses

language selection criteria shown in Table 1, with
a few enhancements added.

Reasonable Financial Cost
Reasonable financial cost refers to the price to
acquire the programming language software and/
or the development environment. While this may
involve individual packages or a site license for a
network version, educators should inquire about
academic discounts for educational institutions,
an alliance in which the university or department
can enroll, or even a free, downloadable version.

Availability of Student/Academic Version
If a student version or academic version is
available, students can install the development
environment on their personal machine, making
it convenient for them to work on their assign-
ments even if the computer lab is not accessible.
However, if the department has no option other
than to use a network-based version because
a student version is unavailable, students may
be forced to work on their assignments in campus
labs, restricted by hours of operation, availability
of transportation, etc. If an academic version has
a limited feature set, then the benefit to the

Programming Language Selection for University Courses, Table 1 Higher-order selection criteria

Software cost
Reasonable financial cost
Availability of student/academic version

Programming language acceptance in academia
Academic acceptance
Availability of quality textbooks

Programming language industry penetration
Stage in life cycle
Industry acceptance
Marketability

Software characteristics
System requirements
Operating system platform dependence
Source code availability

Student-friendly features
Development environment
Debugging facilities

Language pedagogical features
Ease-of-learning fundamental concepts
Coding safety and support for secure code
Advanced features for subsequent courses

Language intent
Scripting or full-featured language
Web development support
Mobile app development support

Language design
Target application domain support

Language paradigm
Methodology or paradigm support
Teaching approach support

Language support and required training
Availability of support
Instructor and staff training

Student experience
Anticipated experience level for incoming students

Programming Language Selection for University Courses 5

students may be considerably reduced, but a stu-
dent version should at least be considered.

Academic Acceptance
Academic acceptance refers to the popularity of
a language at other academic institutions. This
can be gauged by assessing current or projected
use at other institutions. For example, as OO
programming increased in popularity and the
College Board decided to emphasize Java in
the AP CS program, a number of universities,
colleges, and secondary schools adopted Java
as the programming language for their introduc-
tory programming courses (Roberts 2004a).

Availability of Quality Textbooks
The availability of quality textbooks is
impacted by many factors. The life cycle stage
of the language affects the availability of text-
books, because while it is often difficult to find
a quality textbook for a newly released language,
more textbooks become available over the time
it takes for a language to mature. The academic
acceptance of a language also plays a significant
role in the availability of textbooks because
the more widespread the use of a language in
academia, the greater the textbook market for
related textbooks. Publishers service that
market by offering a larger selection of
textbooks. Finally, textbook availability may
also be affected by the teaching approach
used. For example, functions-first, objects-first,
or objects-early are all approaches used to teach
OO languages, but fewer recent texts present
the material from a functions-first perspective.
Availability of reference books should also be
taken into account (Lee and Stroud 1996).

Stage in Life Cycle
A language’s stage in the programming language
life cycle affects not only textbook availability,
as discussed earlier, but it may also impact the
widespread use of a language in both industry and
academia. Universities generally prefer a lan-
guage that is still in its earlier stages, rather than
one like FORTRAN that is in its declining years.
The programming language life cycle as
described by Sharp (2002) is based on the natural

principles of growth, maturation, and decay.
The processes of natural advantage and evolution
operate in the world of programming languages
just as they operate in the biological domain,
but in the case of languages, the main forces are
efficiency of expression versus profitable
adoption.

Industry Acceptance
As discussed earlier, industry acceptance is the
market penetration of a particular language in
industry (Riehle 2003). While many academic
programs place great emphasis on this factor,
Howland (1997) objects that too many languages
are chosen simply because of their current popu-
larity instead of on a sound pedagogical basis.

Marketability
Marketability refers to the employability of grad-
uates and was discussed earlier when pragmatic
concerns were considered. Language selection
is often driven by workplace demand because
marketable skills influence future employability.
Emigh (2001) cautions, however, that 2 or 3 years
may lapse between when a student takes an
introductory programming course and when
he or she enters the workforce. Even curricula
that adopt newer programming languages can
make no guarantee that employers will still be
using those languages when the students are hired.

System Requirements
The system requirements associated with a pro-
gramming language or its development environ-
ment should be considered in the selection
process. The amount of hard disk space needed
for software installation, operating system com-
patibility, and the memory requirements for opti-
mal software performance all factor into the
decision. Both student and lab computers must
meet the minimum requirements of the selected
language.

Operating System Platform Dependence
Some languages are platform dependent, meaning
that they will only run on systems using certain
operating systems. For example, the Swift pro-
gramming language can only be used on macOS,

6 Programming Language Selection for University Courses

iOS, watchOS, tvOS, OS X, and Linux platforms.
Other languages, such as Java, are platform inde-
pendent, meaning that Java development environ-
ments are available for a variety of operating
systems. Platform dependence may be a deal
breaker for faculty members who are fanatic
about a particular operating system.

Source Code Availability
Source code availability refers to whether a lan-
guage and its associated development environ-
ment are open source or proprietary. Open-
source software allows users to modify, change,
and share the source code. For example, PHP
is an open-source language and can be easily
modified by any member of the open-source
community. On the opposite end of the spectrum,
Microsoft is responsible for additions, deletions,
or modifications in any of the languages
supported by the. Net framework, while Sun
is responsible for the ongoing evolution of the
Java language.

Development Environment
Development environments range from simple
text editors and command-line compilers to fully
interactive and integrated development environ-
ments (IDE) (McIver 2002). The development
environment can improve or impair productivity
(Jensen 2004). Unless an IDE is easy to use,
students may be distracted by the environment
rather than concentrating on learning program-
ming concepts (Kölling et al. 1995). However,
well-designed programming environments assist
students in learning to program (Eisenstadt and
Lewis 1992).

Debugging Facilities
Although debugging facilities may be considered
part of the IDE, when assessing a programming
language, one should specifically evaluate the
diagnostic aids associated with the language
(Tharp 1982). Programming environments must
contain extensive tools for tracing and debugging
(Ad Hoc AP CS Committee 2000). Error diagnos-
tics should be clear and meaningful (Mclver and
Conway 1996), and the language should not only

be robust but must also be graceful in failure
(Conway 1993).

Ease of Learning Fundamental Concepts
The learning curve differs greatly between lan-
guages or IDEs. For example, Python is widely
considered to be simpler to learn than a .Net
language like C#. Basic concepts include
sequence, selection, and iteration, as well as
arrays, procedures, basic input/output, and file
manipulation. In addition to ease of learning,
the language must have a concise syntax and
straightforward semantics (Conway 1993).

Coding Safety and Support for Secure Code
Coding safety is assessed by whether the
language offers features like strong type
checking and array bounds checking while
avoiding features like variants and pointers in
unsafe mode. Kölling et al. (1995) note that
a language should have a safe, statically checked
type system, with no undetectable uninitialized
variables and no explicit pointers. Support for
secure code involves the inclusion of security-
related features like Java’s sandbox, which limits
the memory addresses that a Java program can
access.

Advanced Features for Subsequent Courses
Some academic programs use a single language
to introduce basic programming concepts in an
introductory course and then to progress to
advanced concepts, like multithreading, in a sub-
sequent course. In such scenarios, it is critical
that the programming language includes sufficient
advanced features to support an advanced pro-
gramming course.

Scripting or Full-Featured Language
Educators may also want to consider scripting
languages in addition to full-featured languages.
Scripting languages like Python offer sufficient
richness to cover most of the requirements of
an introductory course while avoiding many
implementation issues and reducing the complex-
ity of the development environment. Full-featured
languages, on the other hand, may offer a more

Programming Language Selection for University Courses 7

complete set of language features that an instruc-
tor may want to address.

Web Development Support
Given the prevalence of web-based systems, it is
essential that today’s students have the skills to
develop web-based applications. Programming
languages offer varying levels of web develop-
ment support. Web development capabilities are
not limited to scripting languages, discussed
above, but are offered by full-featured languages
like ASP.Net that provide a high level of support
for web development.

Mobile App Development Support
Today’s students make extensive use of cell phone
apps. The choice to consider mobile application
development limits the selection of languages
that can be considered due to platform consider-
ations. App development languages for Android
are not the same as those used for Apple iOS app
development. For example, two languages that
have recently emerged are Kotlin and Swift.
Kotlin is one of the official languages for Android
development, while Swift was created by Apple
to work with primarily iOS and a few additional
platforms. More mainstream languages like Java,
C#, and Objective-C can also be used for app
development, but the field of language options is
still narrowed considerably. Emulators and simu-
lators for mobile design and development may
help alleviate the platform issue.

Target Application Domain Support
Target application domain support could also be
referred to as “problem domain.” If the program-
ming course is serving a particular problem
domain, the extent to which a language supports
programming for specific applications must
be considered (Howatt 1995). Examples of appli-
cation domains include FORTRAN’s support
for scientific programming, COBOL’s support
for business data processing, and RPG’s
support for report generation. If a programming
course is being developed to serve Electrical
Engineering, C or C++ may be the preferred
language. If a programming course is designed
to serve a data science program, languages

known to support data analysis, like Python,
should be considered.

Methodology or Paradigm Support
Methodology or paradigm support assesses
how well a programming language supports
the paradigm under consideration. For example,
if the OO paradigm is being taught, then the
language must support integral OO concepts like
abstraction, polymorphism, inheritance, and
encapsulation. Similarly, if the aim is to teach
event-driven programming, then IDE support for
a graphical user interface (GUI) and ease of
implementing graphical components is essential.

Teaching Approach Support
Teaching approach support refers to how well
a language supports the teaching approach pre-
ferred by the faculty. For example, the intent of
the course may be to teach programming concepts
with the language simply serving as a vehicle
through which those concepts are reinforced, or
it may be to teach the features of a particular
language, such as using C# to develop an
advanced user interface.

Availability of Support
This refers to the availability of support staff,
including tutors, computer lab staff, and network
administrators, to support the teaching and admin-
istration of a language. Language evaluators must
consider the likelihood that their language ques-
tions, as well as those of the students, will be
answered (Cunningham 2004). This should also
take into account the availability of support
through forums or listservs on the Internet, as
well as vendor support (Tharp 1982). The avail-
ability of other resources like teachers’ guides,
example programs, student workbooks, and pro-
gramming assignments should also be evaluated.
Support may also involve something as basic as
someone who can install a language and its IDE
on a server, so it is accessible to all students. It
may also include the availability of student tutors
who have previous experience with the language.

8 Programming Language Selection for University Courses

Instructor and Staff Training
The training required for instructors and support
staff, the time needed to learn a language or its
IDE, and the availability of qualified instructors to
teach a particular language must also be taken into
consideration. Adopting a new language requires
a willingness on the part of the department to
invest in training its instructors because they
“must continuously enrich their qualifications
and implement new training methods and tech-
niques supplemented with practical methods
and techniques supplemented with practical expe-
rience while teaching a new language that is as
new to them as it is to their class” (Emigh 2001, p.
2).

Anticipated Experience Level for Incoming
Students
The anticipated programming experience level
for incoming students is important because
students’ previous experience and training can
positively or negatively impact their grasp of
new programming paradigms and languages
(Traxler 1994). If students coming into a program
have been previously exposed to a particular
language, then it may influence language selec-
tion. If a program consistently sees incoming
students with little or no programming experi-
ence, it may be necessary to adjust its require-
ments and its programming language selection
accordingly.

Developing Trends

Those performing programming language selec-
tion must be aware of trends that may require
changes in course content. Educators must, how-
ever, take care not to be overly influenced by
trends, because they are just that. Trends change
from year to year, and educators must provide
students with a firm grasp of the fundamentals
of programming even at the risk of ignoring
trends. That said, increased reliance on functional
programming languages, the importance of data
science, and mobile app development all have
a potential impact on what is covered in courses.

Functional Programming
Functional languages use side effect free
functions as a fundamental building block in
the language, rather than objects or procedures.

Functional programming focuses on the appli-
cation of functions to arguments. In fact, the main
program is itself a function that is defined in terms
of other functions. Functional programming has
no implicit state and places its emphasis entirely
on expressions or terms (Hu et al. 2015).

Functional programming was introduced in the
1950s and is experiencing a resurgence in recent
years with the popularity of languages like
Haskell, Clojure, and Scala driven by explosive
growth in the use of smartphones and connected
devices.

As computers, tablets, smartphones, and IoT
gadgets become ubiquitous, servers can act as
bottlenecks to performance. The functional pro-
gramming model allows sections of software
to more easily and efficiently run in parallel
across different CPU cores or machines,
without requiring complex synchronization. This
gives the functional paradigm an edge over the
OO approach when doing concurrent processing
such as web requests (Puryear 2016).

Functional programming is generally more
difficult for students to comprehend than other
paradigms. It is more intuitive for them to view
the world as a group of interacting objects rather
than attempting to model everything as functions.
As such, the resurgence of functional program-
ming may seem to be of little concern when
selecting a language for introductory program-
ming courses. However, it is relevant to this
discussion because “there is growing interest
among some academics to introduce functional
programming and functional thinking as early
as possible within the computer science curricu-
lum” (Winter 2014, p. 33).

Data Science
Whether you call it big data, data science, data
analytics, or something else entirely, it may seem
incongruous to include it in a discussion of
programming languages. However, as the impor-
tance of data science continues to increase,
the programming languages used to support data

Programming Language Selection for University Courses 9

science may begin to influence the selection of
a language for programming courses. R and
Python are two of the more popular open-source
programming languages for data analysis, while
Scala and Julia may also be encountered in this
domain.

Python is of particular interest in this discus-
sion because it is widely touted as being easy
to learn in comparison with most other program-
ming languages. Python is both easy to learn and
simple to use (Newman 2012). Many features
of Python facilitate both teaching and learning,
such as a simple and flexible syntax, immediate
feedback, easy-to-use modules, and strict require-
ments on proper indentation (Grandell et al.
2006). According to an analysis published on the
ACM (Association for Computing Machinery)
website, Python has become the most popular
language for teaching introductory computer
science in the United States (Guo 2014).

When taken together, the increasing impor-
tance of data analytics, the widespread usage of
Python in data analytics, and Python’s shallow
learning curve have combined to result in many
universities adopting Python as their introductory
programming language.

Mobile App Development
The proliferation of smart phone usage and their
ubiquitous phone apps have made mobile app
development one of the hottest trends in software
development. The thorniest issue, as addressed
earlier, is the platform, since different program-
ming languages are used to develop Android apps
and Apple iOS apps. Android is available for
dozens of smartphone models, meanwhile iOS
only for a handful of iPhone and iPad models
developed by Apple (Dogtiev 2017). At the time
this was written, Android had 66.74% of the mar-
ket, while iOS had only 31.46% (NetMarketShare
2017). Regardless of the platform chosen, projec-
tions show that by 2021, the total app downloads
will jump to a stunning 352 billion (Dogtiev
2017). Mobile app development is a critical
trend that may shape programming language
selection for years to come.

Observations

The reality is that the choice of a programming
language for introductory courses often involves
compromise. While there are economic, political,
and pedagogical factors that must be considered
in the decision-making process, the importance
of each of these factors may depend on the
specific aims and priorities of the institution,
educator, or course. Educators must be certain
that none of the factors in the above criteria
are neglected or sacrificed to more highly visible
concerns (Mclver and Conway 1996).

Language selection has long been a difficult
and unstructured task. Few issues in the comput-
ing education world are as strategically important
or as contentious as the choice of programming
language (Jensen 2004). However, the program-
ming language used in the introductory program-
ming course can have a significant impact on
how the course is taught as well as its effective-
ness (Parker et al. 2006a).

Cross-References

▶ Programming and Coding in Secondary
Schools

▶ Programming Languages for Secondary
Schools

▶ Programming Languages for Secondary
Schools, Java

▶ Programming Languages for Secondary
Schools, Pascal

▶ Programming Languages for Secondary
Schools, Python

▶ Programming Languages for University
Courses

▶Teaching Computer Languages in Universities

References

Ad Hoc AP CS Committee (2000) Round 2: potential
principles governing language selection for CS1-CS2.
Retrieved 11 Nov 2017 from http://www.cs.grinnell.
edu/~walker/sigcse-ap/99-00-principles.html

10 Programming Language Selection for University Courses

http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming and Coding in Secondary Schools
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming and Coding in Secondary Schools
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for Secondary Schools
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for Secondary Schools
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for Secondary Schools, Java
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for Secondary Schools, Java
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for Secondary Schools, Pascal
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for Secondary Schools, Pascal
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for Secondary Schools, Python
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for Secondary Schools, Python
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for University Courses
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for University Courses
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Teaching Computer Languages in Universities
http://www.cs.grinnell.edu/~walker/sigcse-ap/99-00-principles.html
http://www.cs.grinnell.edu/~walker/sigcse-ap/99-00-principles.html

Allison I, Ortin P, Powell H (2002) A virtual learning
environment for introductory programming. In: Pro-
ceedings of the 3rd annual conference of the learning
and teaching support network centre for information
and computer sciences, Loughborough, pp 48–52.
Retrieved 11 Nov 2017 from https://openair.rgu.ac.uk/
bitstream/handle/10059/326/Allison%20LTSN-ICS%
20paper.pdf?sequence=1&isAllowed=y

Bergin TJ, Gibson RG (1996) History of programming
languages-II. ACM Press, New York

Conway D (1993) Criteria and considerations in the
selection of a first programming language. Technical
report 93/192, Department of Computer Science,
Monash University

Cunningham W (2004) Language comparison
framework. Portland pattern repository. Retrieved 11
Nov 2017 from http://wiki.c2.com/?
LanguageComparisonFramework

de Raadt M, Watson R, Toleman M (2003) Introductory
programming languages at Australian universities at
the beginning of the twenty first century. J Res Pract
Inf Technol 35(3):163–167. Retrieved 11 Nov 2017
from http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.84.7197&rep=rep1&type=pdf

Dogtiev A (2017) App download and usage statistics
2017. Business of apps. Retrieved 11 Nov 2017 from
http://www.businessofapps.com/data/app-statistics/

Eisenstadt M, Lewis MW (1992) Errors in an interactive
programming environment: causes and cures.
In: Eisenstadt M, Keane MT, Rajan T (eds) Novice
programming environments: explorations in human-
computer interaction and artificial intelligence. Law-
rence Erlbaum Associates, Hillsdale, pp 111–130

Emigh KL (2001) The impact of new programming
languages on university curriculum. In: Proceedings
of ISECON 2001, Cincinnati, 18, pp 1146–1151.
Retrieved 11 Nov 2017 from http://proc.edsig.org/
2001/16c/ISECON.2001.Emigh.pdf

Gee QH, Wills G, Cooke E (2005) A first programming
language for IT students. In: Proceedings of the 6th
annual conference of the learning and teaching support
network centre for information and computer sciences,
York. Retrieved 11 Nov 2017 from https://eprints.
soton.ac.uk/261172/1/LTSN6-ProgrammingforIT.doc

Grandell L, Peltomäki M, Back RJ, Salakoski T (2006)
Why complicate things? Introducing programming
in high school using Python. In: Proceedings of the
eighth Australasian computing education conference
(ACE2006), Hobart. Retrieved 11 Nov 2017 from
http://tucs.fi/publications/attachment.php?fname=
inpGrPeBaSa06a.pdf

Guo P (2014) Python is now the most popular
introductory teaching language at top US. Universities.
Communications of the ACM Blog. Retrieved 11 Nov
2017 from https://cacm.acm.org/blogs/blog-cacm/
176450-python-is-now-the-most-popular-introduc
tory-teaching-language-at-top-u-s-universities/
fulltext#comments

Howatt JW (1995) A project-based approach to program-
ming language evaluation. ACM SIGPLAN Not 30
(7):37–40. Retrieved 11 Nov 2017 from http://

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
22.2727&rep=rep1&type=pdf

Howland JE (1997) It’s all in the language: yet another
look at the choice of programming language for
teaching computer science. J Comput Small Colleges
12(4):58–74. Retrieved 11 Nov 2017 from http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
34.3832&rep=rep1&type=pdf

Hu Z, Hughes J, Wang M (2015) How functional program-
ming mattered. Natl Sci Rev 2(3):349–370. Retrieved
11 Nov 2017 from https://doi.org/10.1093/nsr/nwv042

Jenkins T (2001) The motivation of students of program-
ming. In: ACM SIGCSE Bulletin, Proceedings of
the 6th annual conference on Innovation and technol-
ogy in computer science education ITiCSE’01, 33 (3).
Retrieved 11 Nov 2017 from https://www.cs.kent.ac.
uk/pubs/2001/1401/content.pdf

Jenkins T (2002) On the difficulty of learning to program.
In: Proceedings of the 3rd annual conference of
the learning and teaching support network centre for
information and computing science, Loughborough.
Retrieved 11 Nov 2017 from http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.596.9994&rep=
rep1&type=pdf

Jensen C (2004) Choosing a language for .NET develop-
ment. Borland developer network. Retrieved 11 Nov
2017 from https://edn.embarcadero.com/article/31849

Johnson LF (1995) C in the first course considered harm-
ful. Commun ACM 38(5):99–101

Kelleher C, Pausch R (2005) Lowering the barriers
to programming: a taxonomy of programming
environments and languages for novice programmers.
ACM Comput Surv 37(2):83–137. Retrieved 11 Nov
2017 from https://www.cs.cmu.edu/~caitlin/papers/
NoviceProgSurvey.pdf

King KN (1992) The evolution of the programming
languages course. In: SIGCSE’92 Proceedings of
the spi1;twenty-third SIGCSE technical symposium
on computer science education, pp 213–219

Kölling M, Koch B, Rosenberg J (1995) Requirements
for a first year object oriented teaching language.
In: Proceedings of the twenty-sixth SIGCSE technical
symposium on computer science education, Nashville,
pp 173–177. Retrieved 11 Nov 2017 from http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
29.9469&rep=rep1&type=pdf

Kummerfeld SK, Kay J (2003) The neglected battle
fields of syntax errors. In: ACE’03 Proceedings of the
fifth Australasian conference on computing education
20, pp 105–111. Retrieved 11 Nov 2017 from http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
11.1991&rep=rep1&type=pdf

Lee PA, Stroud RJ (1996) C++ as an introductory program-
ming language. In: Woodman M (ed) Programming
language choice: practice and experience. International
Thomson Computer Press, London, pp 63–82.
Retrieved 11 Nov 2017 from https://assets.cs.ncl.ac.
uk/TRs/496.pdf

Programming Language Selection for University Courses 11

https://openair.rgu.ac.uk/bitstream/handle/10059/326/Allison%20LTSN-ICS%20paper.pdf?sequence=1&isAllowed=y
https://openair.rgu.ac.uk/bitstream/handle/10059/326/Allison%20LTSN-ICS%20paper.pdf?sequence=1&isAllowed=y
https://openair.rgu.ac.uk/bitstream/handle/10059/326/Allison%20LTSN-ICS%20paper.pdf?sequence=1&isAllowed=y
http://wiki.c2.com/?LanguageComparisonFramework
http://wiki.c2.com/?LanguageComparisonFramework
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.7197&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.7197&rep=rep1&type=pdf
http://www.businessofapps.com/data/app-statistics/
http://proc.edsig.org/2001/16c/ISECON.2001.Emigh.pdf
http://proc.edsig.org/2001/16c/ISECON.2001.Emigh.pdf
https://eprints.soton.ac.uk/261172/1/LTSN6-ProgrammingforIT.doc
https://eprints.soton.ac.uk/261172/1/LTSN6-ProgrammingforIT.doc
http://tucs.fi/publications/attachment.php?fname=inpGrPeBaSa06a.pdf
http://tucs.fi/publications/attachment.php?fname=inpGrPeBaSa06a.pdf
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext#comments
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext#comments
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext#comments
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext#comments
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.2727&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.2727&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.2727&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.3832&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.3832&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.3832&rep=rep1&type=pdf
https://doi.org/10.1093/nsr/nwv042
https://www.cs.kent.ac.uk/pubs/2001/1401/content.pdf
https://www.cs.kent.ac.uk/pubs/2001/1401/content.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.596.9994&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.596.9994&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.596.9994&rep=rep1&type=pdf
https://edn.embarcadero.com/article/31849
https://www.cs.cmu.edu/~caitlin/papers/NoviceProgSurvey.pdf
https://www.cs.cmu.edu/~caitlin/papers/NoviceProgSurvey.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.29.9469&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.29.9469&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.29.9469&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.1991&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.1991&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.1991&rep=rep1&type=pdf
https://assets.cs.ncl.ac.uk/TRs/496.pdf
https://assets.cs.ncl.ac.uk/TRs/496.pdf

McIver L (2002) Evaluating languages and environments
for novice programmers. In: Proceedings of the four-
teenth annual meeting of the psychology of program-
ming interest group, London, pp 100–110. Retrieved 11
Nov 2017 from http://www.ppig.org/papers/14th-
mciver.pdf

Mclver L, Conway DM (1996) Seven deadly sins of intro-
ductory programming language design. In: Proceed-
ings of software engineering: education and practice
(SE:E&P’96), Dunedin, pp 309–316. Retrieved 11 Nov
2017 from http://users.monash.edu/~damian/papers/
PDF/SevenDeadlySins.pdf

NetMarketShare (2017) Mobile/Tablet operating system
market share. Retrieved 11 Nov 2017 from https://
www.netmarketshare.com/operating-system-market-
share.aspx?qprid=8&qpcustomd=1

Newman M (2012) Python programming for physicists.
Computational physics with Python. CreateSpace
Publishing, Charleston, pp 9–87. Retrieved 11 Nov
2017 from http://www-personal.umich.edu/~mejn/com
putational-physics/programming.pdf

Parker KR, Davey B (2012) The history of computer
language selection. In: Tatnall A (ed) Reflections on
the history of computing: preserving memories and
sharing stories. Springer, Boston, pp 166–179.
Retrieved 12 Nov 2017 from https://hal.inria.fr/hal-
01526795/document

Parker KR, Ottaway TA, Chao JT (2006a) Criteria for the
selection of a programming language for introductory
courses. Int J Knowl Learn 2(1/2):119–139

Parker KR, Chao JT, Ottaway TA, Chang J (2006b) A
formal language selection process for introductory pro-
gramming courses. J Inf Technol Educ 5:133–151.
Retrieved 11 Nov 2017 from http://www.jite.org/docu
ments/Vol5/v5p133-151Parker140.pdf

Puryear M (2016) 2016’s top programming trends.
TechCrunch. Retrieved 11 Nov 2017 from https://
techcrunch.com/2016/12/26/2016s-top-programming-
trends/

Riehle R (2003) SEPR and programming language
selection. CrossTalk J Def Softw Eng 16(2):13–17.
Retrieved 11 Nov 2017 from https://pdfs.
semanticscholar.org/af9f/
8ed4fb5b02339da159ff868d82d2ec0661a7.pdf

Roberts E (2004a) Resources to support the use of java in
introductory computer science. In: Proceedings of
the 35th SIGCSE technical symposium on computer
science education, pp 233–234. Retrieved 11 Nov 2017
from http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.85.4693&rep=rep1&type=pdf

Roberts E (2004b) The dream of a common language: the
search for simplicity and stability in computer science
education. In: Proceedings of the 35th SIGCSE techni-
cal symposium on computer science education, pp
115–119. Retrieved 11 Nov 2017 from https://www-
cs-faculty.stanford.edu/~eroberts/talks/SIGCSE-2004/
DreamOfACommonLanguage.pdf

Sharp R (2002) Programming language lifecycles–where’s
Java at? Software reality

Smith C, Rickman J (1976) Selecting languages for
pedagogical tools in the computer science curriculum.
SIGCSE’76 Proc Sixth SIGCSE Tech Symp Comput
Sci Educ 8(3):39–47

Smolarski DC (2003) A first course in computer science:
languages and goals. Teach Math Comput Sci 1
(1):137–152. Retrieved 11 Nov 2017 from http://
math.scu.edu/~dsmolars/smolar-e.pdf

Solntseff N (1978) Programming languages for introduc-
tory computing courses: a position paper. In:
SIGCSE’78 papers of the SIGCSE/CSA technical sym-
posium on computer science education, pp 119–124

Soloway E, Bonar J, Ehrlich K (1989) Cognitive strategies
and looping constructs: an empirical study. In: Soloway
E, Spohrer JC (eds) Studying the novice programmer.
Lawrence Erlbaum Associates, Hillsdale, pp 853–860.
Retrieved 11 Nov 2017 from http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.11.8250&rep=
rep1&type=pdf

Stephenson C (2000) A report on high school computer
science education in five US states. Funded by IBM.
Retrieved 11 Nov 2017 from http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.195.2415&rep=
rep1&type=pdf

Tharp AL (1982) Selecting the “right” programming lan-
guage. In: SIGCSE’82 proceedings of the thirteenth
SIGCSE technical symposium on computer science
education, pp 151–155

Traxler J (1994) Teaching programming languages and
paradigms. In: 2nd All-Ireland conference on the
teaching of computing, Dublin

Watt DA (2000) Programming languages–trends in educa-
tion. In: Proceedings of Simposio Brasileiro de
Linguagens de Programacao, Recife. Retrieved 11
Nov 2017 from http://www.dcs.gla.ac.uk/~daw/publica
tions/PLTE.ps

Wile DS (2002) Programming languages. In: Marciniak JJ
(ed) Encyclopedia of software engineering, 2nd edn.
Wiley, Hoboken, pp 1010–1023

Winter V (2014) Bricklayer: an authentic introduction
to the functional programming language SML. In: Pro-
ceedings of the 3rd international workshop on trends in
functional programming in education, Soesterberg,
May 2014, pp 33–49. Retrieved 11 Nov 2017 from
https://arxiv.org/pdf/1412.4881.pdf

Wirth N (1993) Recollections about the development
of Pascal. In: HOPL-II The second ACM SIGPLAN
conference on history of programming languages, pp
333–342. Retrieved 11 Nov 2017 from http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.475.
6989&rep=rep1&type=pdf

Zelle JM (1999) Python as a first language. In: Proceedings
13th annual Midwest computer conference (MCC 99).
Retrieved 11 Nov 2017 from http://mcsp.wartburg.edu/
zelle/python/python-first.html

12 Programming Language Selection for University Courses

http://www.ppig.org/papers/14th-mciver.pdf
http://www.ppig.org/papers/14th-mciver.pdf
http://users.monash.edu/~damian/papers/PDF/SevenDeadlySins.pdf
http://users.monash.edu/~damian/papers/PDF/SevenDeadlySins.pdf
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=8&qpcustomd=1
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=8&qpcustomd=1
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=8&qpcustomd=1
http://www-personal.umich.edu/~mejn/computational-physics/programming.pdf
http://www-personal.umich.edu/~mejn/computational-physics/programming.pdf
https://hal.inria.fr/hal-01526795/document
https://hal.inria.fr/hal-01526795/document
http://www.jite.org/documents/Vol5/v5p133-151Parker140.pdf
http://www.jite.org/documents/Vol5/v5p133-151Parker140.pdf
https://techcrunch.com/2016/12/26/2016s-top-programming-trends/
https://techcrunch.com/2016/12/26/2016s-top-programming-trends/
https://techcrunch.com/2016/12/26/2016s-top-programming-trends/
https://pdfs.semanticscholar.org/af9f/8ed4fb5b02339da159ff868d82d2ec0661a7.pdf
https://pdfs.semanticscholar.org/af9f/8ed4fb5b02339da159ff868d82d2ec0661a7.pdf
https://pdfs.semanticscholar.org/af9f/8ed4fb5b02339da159ff868d82d2ec0661a7.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.4693&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.4693&rep=rep1&type=pdf
https://www-cs-faculty.stanford.edu/~eroberts/talks/SIGCSE-2004/DreamOfACommonLanguage.pdf
https://www-cs-faculty.stanford.edu/~eroberts/talks/SIGCSE-2004/DreamOfACommonLanguage.pdf
https://www-cs-faculty.stanford.edu/~eroberts/talks/SIGCSE-2004/DreamOfACommonLanguage.pdf
http://math.scu.edu/~dsmolars/smolar-e.pdf
http://math.scu.edu/~dsmolars/smolar-e.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.8250&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.8250&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.8250&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.195.2415&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.195.2415&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.195.2415&rep=rep1&type=pdf
http://www.dcs.gla.ac.uk/~daw/publications/PLTE.ps
http://www.dcs.gla.ac.uk/~daw/publications/PLTE.ps
https://arxiv.org/pdf/1412.4881.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.475.6989&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.475.6989&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.475.6989&rep=rep1&type=pdf
http://mcsp.wartburg.edu/zelle/python/python-first.html
http://mcsp.wartburg.edu/zelle/python/python-first.html

	131-1:
	Programming Language Selection for University Courses
	Synonyms
	Definition
	Introduction
	The History of Language Selection
	Selection Approaches
	Pragmatic Approach
	Industry Acceptance
	Marketability

	Pedagogical Selection
	Avoiding the Complexities of Industrial Environments
	Clear Problem-Solving Principles

	Language Selection Process
	Selection Criteria
	Reasonable Financial Cost
	Availability of Student/Academic Version
	Academic Acceptance
	Availability of Quality Textbooks
	Stage in Life Cycle
	Industry Acceptance
	Marketability
	System Requirements
	Operating System Platform Dependence
	Source Code Availability
	Development Environment
	Debugging Facilities
	Ease of Learning Fundamental Concepts
	Coding Safety and Support for Secure Code
	Advanced Features for Subsequent Courses
	Scripting or Full-Featured Language
	Web Development Support
	Mobile App Development Support
	Target Application Domain Support
	Methodology or Paradigm Support
	Teaching Approach Support
	Availability of Support
	Instructor and Staff Training
	Anticipated Experience Level for Incoming Students

	Developing Trends
	Functional Programming
	Data Science
	Mobile App Development

	Observations
	Cross-References
	References

