
T

Teaching Computer
Languages in Universities

Kevin R. Parker1, David V. Beard1 and
Bill Davey2
1Department of Informatics and Computer
Science, Idaho State University, Pocatello, ID,
USA
2School of Business IT and Logistics, RMIT
University, Melbourne, VIC, Australia

Synonyms

Algorithmic language; Computer programming;
Computer-oriented language; Computing lan-
guage; Programming language; Software
development

Definition

A computer language may refer to any of a variety
of languages used to express a set of detailed
instructions to a computer so that it performs
specific tasks.

Introduction

This section will discuss a variety of issues sur-
rounding the use of computers in universities and
throughout higher education. The initial entries

focus on teaching university students how to
write computer programs and solve problems
using algorithms.

This entry introduces computer languages,
defined above as any of a variety of languages
used to express a set of detailed instructions to a
computer so that it performs specific tasks. Such
languages are based on specific syntactic and
semantic rules used to define the meaning of the
programming language constructs.

Programming Overview

Various programming paradigms have emerged
over time. A programming paradigm is a collec-
tion of coherent, often ideologically or theoreti-
cally based abstractions that together mold
the design process and ultimately determine a
program’s structure (Wampler and Clark 2010;
Ambler et al. 1992).

The paradigm being followed influences the
program development process. There are various
approaches for developing programs, including
the process-oriented approach and the object-ori-
ented approach.

Process-Oriented Approach
When using the process-oriented approach, the
problem being analyzed is considered from
the aspect of what processes or procedures must
be performed in order to convert the provided
input into the desired output. When following

© Springer Nature Switzerland AG 2019
A. Tatnall (ed.), Encyclopedia of Education and Information Technologies,
https://doi.org/10.1007/978-3-319-60013-0_49-1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-60013-0_49-1&domain=pdf
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Algorithmic language
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Computer programming
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Computer-oriented language
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Computing language
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Computing language
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming language
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Software development
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Software development
https://doi.org/10.1007/978-3-319-60013-0_49-1


this approach, each program specifies a list of
instructions indicating how the program’s
purpose is accomplished. Developing a sequence
of instructions for a computer to follow involves
a certain process. The problem-solving phase
involves analyzing the problem and devising
a general solution called an algorithm. An algo-
rithm is simply a step-by-step outline detailing
how to solve a problem in a finite amount of
time. After testing the algorithm to confirm that
it works correctly, it can be translated into a pro-
gramming language.

As programs become more complex, under-
standability can be improved if each process is
considered separately. This is done by dividing
the program into functions or subprograms. Each
subprogram should have a clearly defined purpose
and a clearly defined interface to the other sub-
programs in the program. This subdivision of pro-
grams can be carried further by grouping related
subprograms into modules, referred to as modular
design. The “divide and conquer” approach is
one of the cornerstones of structured program-
ming. Structured programming, along with its
familiar features such as modular design, has
long been a reliable approach to program
development.

Object-Oriented Approach
One of the primary shortcomings of traditional
program development techniques is their inability
to easily handle the complexity associated
with today’s larger programs. Object-oriented
(OO) development techniques are better able to
cope with this complexity by offering several
improved features such as data hiding, encapsula-
tion, and polymorphism that make large programs
easier to maintain and modify.

OO designs are thought to more accurately
model the real world. Instead of viewing the
world as a set of processes, it views the world as
a collection of entities that are characterized by
certain behaviors. Furthermore, OO languages
make it easier to create new data types to better
represent real-world objects.

The fundamental idea behind OO languages
is to combine both data and the functions that
operate on that data into a single unit called an

object. In order to conceptualize a programming
problem, the programmer determines what parts
of the problem can bemost usefully represented as
objects, and then all the data and functions
connected with that object are combined in the
class specification. An object’s functions, referred
to as methods, provide the only way to access its
data. In order to determine the value of a data item
in an object, one of the object’s methods must be
called to read the data item and return its value.
The data cannot be accessed directly. It is hidden
and is safe from accidental alteration. Data and
functions are said to be encapsulated into a single
entity. Both data encapsulation and data hiding are
key concepts in the object-oriented paradigm.
Restricting changes to an object’s data to its mem-
ber functions ensures that no other functions
can alter that data and therefore simplifies writing,
debugging, and maintaining the program.

Language History

Both programming languages and program dev-
elopment techniques emerged near the middle of
the twentieth century. Von Neumann’s (1945)
computer architecture led to very early program-
ming languages, which were individual machine
languages designed to control specific central
processing units. UNIVAC’s C-10 language,
developed in 1949, was the first computer lan-
guage and made use of mnemonic instructions,
like “a” for add and “b” for bring. It was not long
before high-level programming languages with
more natural syntax became available to simplify
computer programming. By the late 1950’s, uni-
versities had discovered, and in many cases cre-
ated, higher-level languages.

The Computer History Museum (http://www.
computerhistory.org/) provides a visual timeline
for the creation of early languages, which is sum-
marized in Table 1.

FORTRAN, designed to ease the translation
of mathematical formulas into code, was released
in 1957. ALGOL, released in 1958 and updated in
1960, introduced recursion, indirect addressing,
and character manipulation, among other features.
Many universities adopted ALGOL for use in

2 Teaching Computer Languages in Universities

http://www.computerhistory.org/
http://www.computerhistory.org/


their computer programming courses because it
provided a precise and useful way for expressing
algorithms (Keet 2004). COBOL was developed
in 1959, and 80% of the world’s daily business
transactions still rely on COBOL (Beach 2014).
Along with BASIC, these early higher-level
imperative paradigm programming languages
(Wilson and Clark 1993) used global variables,
assignment statements, labeled commons, and
goto statements to implement increasingly com-
plex programs. While these early languages had
subroutines, lengthy programs often featured
multiple goto statements that branched through-
out the rest of the code. The resulting “spaghetti
code” (Conway 1978) was difficult to understand,
debug, maintain, and extend (Dijkstra 1968).

In parallel, an alternate paradigm of functional
programming languages evolved out of mathe-
matical logic and recursion, with languages such
as LISP released in 1959 (Turner 2012). LISP
used many small isolated functions with if expres-
sions and recursion instead of loops, allowing
small portions of the overall problem to be
implemented quickly and independently. Ideally,
each function was implemented without any inter-
nal variables and with a single if expression sim-
ilar to a mathematical formula. Each function was
“side-effect free,” meaning that there were no

variables or structures outside the function that
were affected by actions inside the function.

While functional programming languages such
as LISP were used mainly in universities, the
underlying concepts of small isolated independent
functions and hierarchical decomposition were
included in the paradigm of structured program-
ming languages (Dijkstra 1972; Knuth 1974) and
embraced by industry (Yourdon and Constantine
1975). Software developers were encouraged to
use hierarchical decomposition and structure
charts (Yourdon and Constantine 1975) to create
many small procedures (functions and subrou-
tines) with no global variables. Each of these pro-
cedures performed a single task, could be tested
independently of the rest of the code, and could be
reused in other parts of the code while avoiding
global variables. Pass-by-value parameters were
used whenever possible to further isolate these
routines. Procedural or structured programming
languages of this period typically included PL/I,
ALGOL, and C.

As early as 1960 there were over 70 languages
in existence, and by 1971 there were 164 (Sammet
1972). Sammet identifies the period from 1960 to
1970 as the decade in which the programming

Teaching Computer Languages in Universities, Table 1 Timeline of early language creation (from http://www.
computerhistory.org/timeline/software-languages/)

Year Development

1945 Zuse begins Plankalkül (plan calculus), the first algorithmic programming language

1948 Shannon identifies the bit as the fundamental unit of data and shows how to code data for transmission

1952 Hopper completes the A-0 compiler

1953 Backus creates Speedcode for the IBM 701

1957 IBM team led by Backus develops FORTRAN

1958 Algol 58, intended to be a universal language, released

1959 LISP created by McCarthy

1959 COBOL created by a team representing manufacturers and pentagon

1962 Iverson develops APL

1963 First edition of the ASCII standard published

1964 BASIC created at Dartmouth by Kurtz and Kemeny

1965 Simula written by Nygaard and Dahl

1969 UNIX developed at AT&T by Thompson and Ritchie

1970 Pascal programming language introduced by Wirth

1972 C programming language released by Thompson and Ritchie

Teaching Computer Languages in Universities 3

http://www.computerhistory.org/timeline/software-languages/
http://www.computerhistory.org/timeline/software-languages/


language field matured. Higher-level languages
became more widely used than machine-level
coding because they made it possible to specify
a problem solution in terms closer to human
language.

By 1972, most universities in the USA and
Australia had established computer science or
data processing (which later evolved into infor-
mation systems) degree programs. The majority
of the computer science degree programs offered
ALGOL, FORTRAN, or LISP, while most data
processing programs offered COBOL. In Britain,
BASIC was also widely used. During the late
1960s, departments experimented with a variety
of other languages like PL/I.

The mid-1970s brought about the introduction
of the microcomputer. These machines came with
BASIC installed, and while that revolutionized
the teaching of computer programming courses
in high schools, the trend did not widely impact
university programs. Instead, in the 1970s
many universities adopted Pascal for use in their
introductory programming course. Even as late as
1996, a survey of programs accredited by the
Computing Sciences Accreditation Board found
that 36% of the responding institutions listed
Pascal as their first language (McCauley and
Manaris 1998). The use of Pascal in academia
was eventually supplanted by other languages
beginning with C and C++ and eventually shifting
to Java and C#.

The 1980s continued to experience an increase
in the number of available languages. Tharp
(1982) reviewed several comparison studies of
programming languages including FORTRAN,
COBOL, JOVIAL, Ada, ALGOL, Pascal, PL/I,
and SPITBOL on the basis of their support of
good software engineering practices, availability
of control structures, programmer time required
for developing a representative non-numeric algo-
rithm, and the machine resources expended
in compiling and executing it.

The structured programming paradigm began
to give way to the OO paradigm in the early to
mid-1990s as languages supporting OO became
widely available. The emergence of the OO
paradigm accelerated more extensive use of

event-driven programming. In the event-driven
programming paradigm, program execution
flow is controlled not by pre-defined software
constructs but rather by “events” that might be
generated by a user clicking a mouse, an external
event from the network, or by a timer.

Additional programming paradigms have
emerged over time, including relational,
functional, constraint-based, theorem-proving,
concurrent, imperative, declarative, graphical,
reflective, context-aware, rule-based, and agent-
oriented (Wampler and Clark 2010). Today’s
applications, however, are seldom homogeneous
and combine aspects from several different para-
digms. Many complex systems consist of a
variety of subcomponents that require a mixture
of technologies. Therefore, using a single pro-
gramming language and paradigm is becoming
less common, with a movement toward multi-
paradigm programming in which the heteroge-
neous subcomponents are each implemented
with the appropriate paradigm. This may be
accomplished through the use of multiple lan-
guages, an approach referred to as polyglot
(“many tongues”) programming (Wampler and
Clark 2010).

Multiparadigm programming can also be
achieved using a programming language designed
to support multiple paradigms such as C++, which
supports features from multiple paradigms
including classes, overloaded functions, tem-
plates, modules, ordinary procedural program-
ming, and macros (Coplien 1999). There are also
various experimental programming languages
that combine multiple paradigms.

Observations

This entry has provided a brief introduction
to computing languages. Subsequent entries will
discuss the selection of programming languages
for higher education courses, followed by teach-
ing software design techniques in university
courses, comparative languages, teaching mobile
computing, informatics education, health infor-
matics education, approaches for teaching agile
methodologies, and teaching robotics courses.

4 Teaching Computer Languages in Universities



Cross-References

▶ Programming and Coding in Secondary
Schools

▶ Programming Language Selection for Univer-
sity Courses

▶ Programming Languages for Secondary
Schools

▶ Programming Languages for Secondary
Schools, Java

▶ Programming Languages for Secondary
Schools, Pascal

▶ Programming Languages for Secondary
Schools, Python

▶ Programming Languages for University
Courses

References

Ambler AL, Burnett MM, Zimmermann BA (1992) Oper-
ational versus definitional: a perspective on program-
ming paradigms. IEEEComput 25(9):28–43. Retrieved
November 11, 2017 from ftp://ftp.cs.orst.edu/pub/bur
nett/Computer-paradigms-1992.pdf

Beach G (2014) Cobol is dead. Long live Cobol! Wall
Street J. Retrieved November 11, 2017 from https://
blogs.wsj.com/cio/2014/10/02/cobol-is-dead-long-
live-cobol/

Conway R (1978) A primer on disciplined programming
using PL/I, PL/CS, and PL/CT. Winthrop Publishers,
Cambridge, MA

Coplien JO (1999) Multi-paradigm design for C++.
Addison Wesley, Boston. Retrieved November 11,
2017 from http://www.inkdrop.net/docs/multi
Paradigm.pdf

Dijkstra EW (1968) Letters to the editor: go to statement
considered harmful. Commun ACM 11(3):147–148.
Retrieved November 11, 2017 from http://codeblab.
com/wp-content/uploads/2009/12/Go-To-Statement.
pdf

Dijkstra EW (1972) Notes on structured programming.
In: Structured programming. Academic, London, pp
1–82. Retrieved November 11, 2017 from

https://www.cs.utexas.edu/users/EWD/ewd02xx/
EWD249.PDF

Keet EE (2004) A personal recollection of software’s early
days (1960–1979): part 1. IEEE Ann Hist Comput
26:46–61

Knuth D (1974) Structured programming with go to state-
ments. Comput Surv 6(4):261–301. Retrieved Novem-
ber 11, 2017 from https://pic.plover.com/knuth-GOTO.
pdf

McCauley R, Manaris B (1998) Computer science
programs: what do they look like? A report on the
annual survey of accredited programs. Proceedings of
the 29th SIGCSE technical symposium on computer
science education, pp 15–19. Retrieved November 11,
2017 from http://www.academia.edu/15180415/Com
puter_science_degree_programs_what_do_they_
look_like_A_report_on_the_annual_survey_of_
accredited_programs

Sammet JE (1972) Programming languages: history and
future. CommunACM15(7):601. Retrieved November
11, 2017 from https://pdfs.semanticscholar.org/48af/
15cfd104f7a5d91fef8f3136fe88502ada95.pdf

Tharp AL (1982) Selecting the “right” programming lan-
guage. SIGCSE ‘82 Proceedings of the thirteenth
SIGCSE technical symposium on computer science
education, pp 151–155

Turner D (2012) Some history of functional programming
languages. TFP 2012 Proceedings of the 2012 confer-
ence on trends in functional programming, vol 7829, pp
1–20. Retrieved November 11, 2017 from https://www.
cs.kent.ac.uk/people/staff/dat/tfp12/tfp12.pdf

von Neumann J (1945) First draft of a report on the
EDVAC, Contract No. W-670-ORD-4926, U.S. Army
Ordnance Department, University of Pennsylvania
Moore School of Electrical Engineering, Philadelphia.
Retrieved November 12, 2017 from http://www.
virtualtravelog.net/wp/wp-content/media/2003-08-
TheFirstDraft.pdf

Wampler D, Clark T (2010) Multiparadigm programming.
IEEE Softw 27(5):2–7. Retrieved November 11, 2017
from https://www.computer.org/csdl/mags/so/2010/05/
mso2010050020.pdf

Wilson LB, Clark RG (1993) Comparative programming
languages. Addison Wesley, Boston

Yourdon E, Constantine LL (1975) Structured design: fun-
damentals of a discipline of computer program and
systems design. Yourdon Press, New York

Teaching Computer Languages in Universities 5

http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming and Coding in Secondary Schools
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming and Coding in Secondary Schools
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Language Selection for University Courses
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Language Selection for University Courses
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for Secondary Schools
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for Secondary Schools
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for Secondary Schools, Java
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for Secondary Schools, Java
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for Secondary Schools, Pascal
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for Secondary Schools, Pascal
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for Secondary Schools, Python
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for Secondary Schools, Python
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for University Courses
http://link.springer.com/search?facet-eisbn=978-3-319-60013-0&facet-content-type=ReferenceWorkEntry&query=Programming Languages for University Courses
ftp://ftp.cs.orst.edu/pub/burnett/Computer-paradigms-1992.pdf
ftp://ftp.cs.orst.edu/pub/burnett/Computer-paradigms-1992.pdf
https://blogs.wsj.com/cio/2014/10/02/cobol-is-dead-long-live-cobol/
https://blogs.wsj.com/cio/2014/10/02/cobol-is-dead-long-live-cobol/
https://blogs.wsj.com/cio/2014/10/02/cobol-is-dead-long-live-cobol/
http://www.inkdrop.net/docs/multiParadigm.pdf
http://www.inkdrop.net/docs/multiParadigm.pdf
http://codeblab.com/wp-content/uploads/2009/12/Go-To-Statement.pdf
http://codeblab.com/wp-content/uploads/2009/12/Go-To-Statement.pdf
http://codeblab.com/wp-content/uploads/2009/12/Go-To-Statement.pdf
https://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
https://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
https://pic.plover.com/knuth-GOTO.pdf
https://pic.plover.com/knuth-GOTO.pdf
http://www.academia.edu/15180415/Computer_science_degree_programs_what_do_they_look_like_A_report_on_the_annual_survey_of_accredited_programs
http://www.academia.edu/15180415/Computer_science_degree_programs_what_do_they_look_like_A_report_on_the_annual_survey_of_accredited_programs
http://www.academia.edu/15180415/Computer_science_degree_programs_what_do_they_look_like_A_report_on_the_annual_survey_of_accredited_programs
http://www.academia.edu/15180415/Computer_science_degree_programs_what_do_they_look_like_A_report_on_the_annual_survey_of_accredited_programs
https://pdfs.semanticscholar.org/48af/15cfd104f7a5d91fef8f3136fe88502ada95.pdf
https://pdfs.semanticscholar.org/48af/15cfd104f7a5d91fef8f3136fe88502ada95.pdf
https://www.cs.kent.ac.uk/people/staff/dat/tfp12/tfp12.pdf
https://www.cs.kent.ac.uk/people/staff/dat/tfp12/tfp12.pdf
http://www.virtualtravelog.net/wp/wp-content/media/2003-08-TheFirstDraft.pdf
http://www.virtualtravelog.net/wp/wp-content/media/2003-08-TheFirstDraft.pdf
http://www.virtualtravelog.net/wp/wp-content/media/2003-08-TheFirstDraft.pdf
https://www.computer.org/csdl/mags/so/2010/05/mso2010050020.pdf
https://www.computer.org/csdl/mags/so/2010/05/mso2010050020.pdf

	49-1: 
	Teaching Computer Languages in Universities
	Synonyms
	Definition
	Introduction
	Programming Overview
	Process-Oriented Approach
	Object-Oriented Approach

	Language History
	Observations
	Cross-References
	References


