
Issues in Informing Science and Information Technology

A Data Model Validation Approach for
Relational Database Design Courses

Kevin R. Parker
Idaho State University, Pocatello, ID, USA

parkerkr@isu.edu

Abstract
This paper presents an instructional method for validating a relational database design. Data
model validation is often overlooked in course projects involving relational database design, in
part because while most database texts stress the importance of validation, few provide an in-
structional method for performing validation. Validation is a critical step, especially for students.
A flawed data model may omit non-key attributes or even the foreign keys required to join tables.
This can make the design of SQL queries, forms, and reports a frustrating experience. This ap-
proach requires the designer to determine which attributes account for the field values on forms
and reports, which entities are associated with those attributes, and how those entities are linked
to an integral or primary entity. Such an approach serves to validate the completeness of the data
model.

Keywords: data model validation, instructional method, database, relational database, validation,
verification.

Introduction
Several critical steps make up the database life cycle, but data model validation is often over-
looked in course projects that teach relational database design. This is unsurprising, because
while most database texts stress the importance of validation, few provide an instructional method
for performing validation. If a flawed data model is not validated and corrected, SQL queries and
the design of forms and reports can be frustrating or even hopeless. This is especially the case if
students have failed to include one or more foreign keys, making it impossible to correctly link
tables using their data model.

When students are assigned a relational database design project they are generally directed to fol-
low a specific approach for design and normalization. They first identify objects and relations,
using techniques such as analysis of report requirements, functional analysis, transaction analysis,
or scenario analysis. They next develop an entity-relationship diagram, and finally they normalize
the resulting design. Before implementing the design through table creation, the model should be
validated to insure that the design is complete. The validation should confirm that all of the data
items that appear on a form or report correspond to attributes in the entities, and that the entities

are correctly linked.

This paper presents an instructional
method for validating a relational da-
tabase design in order to insure that
the database includes a complete at-
tribute set as well as the requisite links
between tables. The method also helps
students to better understand how data
are retrieved from multiple tables so

Material published as part of this journal, either on-line or in print,
is copyrighted by Informing Science. Permission to make digital or
paper copy of part or all of these works for personal or classroom
use is granted without fee provided that the copies are not made or
distributed for profit or commercial advantage AND that copies 1)
bear this notice in full and 2) give the full citation on the first page.
It is permissible to abstract these works so long as credit is given.
To copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission from the pub-
lisher at Publisher@InformingScience.org

mailto:parkerkr@isu.edu

Data Model Validation Approach

814

that they are able to write more complex queries.

Literature Review
An extensive literature review uncovered few, if any, useful instructional methods for data model
validation. Wilson (1986) describes the structure of a database design course, but makes no men-
tion of data model validation. Zamperoni and Löhr-Richter (1993) present a complex validation
model based on a quantitative dependency graph, but such an approach is too arcane for most
students. Haerder (1978) describes the structure of relationships between entities, but makes no
mention of data model validation to insure that all relationships are accounted for. Teorey and Fry
(1980) uses a processing matrix in which each transaction and report is represented in terms of
the attributes required. It may be possible to adapt this approach for validation, but it is not pre-
sented as such.

Balouch (1999) makes a brief reference to logical access maps (LAMs). He cites an unnamed
source that states that a logical access map “graphically depicts the route of a sequence of actions
that act upon the entities and relationships of a data design.” It further states that a LAM “pro-
vides a useful check that all the attributes required for a particular transaction are present and can
be accessed.” While the concept sounds similar to the one upon which this paper is based, differ-
ing definitions of LAMs exist in the literature and no similar definition could be found. Chundur
(2001) not only recognizes the need for validation, but also suggests an approach. He notes that
designers must insure that the logical data model supports the transactions required by the user
view, and those transactions can be determined from the user's requirements specification. He
states that given the ER diagram, the data dictionary and the primary key/foreign entity links, the
designer can perform a manual validation. However, he provides no details on how to go about
performing such a validation

As noted previously, few texts provide a method for data model validation. Kroenke (2003) notes
that the most common form of validation is to show the data model to the users and obtain their
feedback. While that may accurately reflect real-world practices, textbook cases do not provide
real users, leading students to skip validation if no alternate approach is provided. Kroenke em-
phasizes that it is exceedingly important to verify that all of the data and relationships necessary
to support the use cases are present and accurately represented in the data model. He explains that
data model validation is exceedingly important because it is much easier and cheaper to correct
errors at this early stage than it is to correct them once the database has been implemented. Con-
noelly and Begg (1999) briefly point out that data models must be validated against the transac-
tions that they are required to support, and they note the critical role of user involvement in vali-
dation. Like Kroenke, however, they provide no instructional method. Kroenke (2004) devotes a
bit more time to validation, stating that if the data model is incorrect, then the database will be
incorrect. In addition, “forms, reports, and other application elements will then either be wrong,
or their design will conflict with the design of the database and it will be very difficult and expen-
sive to construct them.” Like the approach presented here, Kroenke indicates that the data model
must incorporate all user descriptions of their data needs, and must support every form and report
in the requirements.

Rob and Coronel (2001) define data model verification as verifying the E-R model against the
proposed system processes in order to corroborate that the database model can support the in-
tended processes. They include the concept of a central entity, but define it differently than the
primary entity described in this paper. They propose a method of verification, but it is based on
the concept of database modules and their cohesion and coupling with other modules.

Hoffer, Prescott, and McFadden, (2002) concur that the most common way of evaluating a data
model is through a series of reviews. The review team insures that it will be possible to construct
a schema to support every form and report in the requirements. Such an approach assumes that

 Parker

 815

forms and reports are available from an existing system that is being modified, or that prototypes
of forms and reports have been constructed. Although it is not used in conjunction with valida-
tion, Hoffer, et al., use a type of relational map that shows various entities and the relationships
between them. It might be possible to draw such a figure for each form, report, etc., in order to
see if that figure is a subset of or can be derived from a similar relational map for the whole data-
base. Then it might be possible to determine if the needed data and relationships are accessible.
This is conjecture, because the text does not use relational maps for the purpose of validation.

To sum it up, an examination of the literature was unable to find a well-defined instruction
method for data model validation. Most textbooks agree that when validation is performed in a
real-world setting it should heavily involve the users, and may use existing or mock-up forms and
reports as a basis. However, no one provides an instructional method for validating a data model.
This method was developed to fill that gap.

An Instructional Method for Data Model Validation
This approach assumes that forms and reports are available from an existing system that is being
modified, or that mock-ups of forms and reports have been developed. When performing the vali-
dation, the first step is to determine the primary entity from which the form or report is derived,
and then show how the attributes, including those from other entities, are obtained through for-
eign keys, composite keys, etc. The primary entity is the entity from which the most important
(qualitatively speaking) form or report information comes from. For example, a rental contract
might have information from a contract entity, a customer entity, and a rental item entity, but the
primary entity would be the contract entity. If one of the items on the form or report corresponds
to an attribute in some other entity, that entity is referred to here as the source or source entity.

Each form or report must be validated, and each validation adheres to the following format:

report/form/process: <report name/form name/process name>
 This involves <x> entities and composite entities:
 <entity 1>
 <entity 2>
 :
 <entity n>

The primary entity is <entity primary>

The data items are accounted for in the E-R Diagram as follows:

At this point, each data item must be traced from its source back to the primary entity, and the
links between intermediate entities are provided. Tracing can be done using a textual format, a
graphical format, or both. There are several cases that must be taken into account. The possible
cases are enumerated below, and a detailed explanation with formatting guidelines and examples
follows.

The possible cases are

Case 1: The data item is an attribute of a non-primary entity, which is not linked directly to
the primary entity.

Case 2: The data item is an attribute of the primary entity.

Data Model Validation Approach

816

Case 3: The data item is an attribute of a non-primary entity, which is linked directly to the
primary entity. The data item is an attribute that is both the primary key of the non-
primary entity and the foreign key of the primary entity or, depending on connec-
tivity, both the primary key of the primary entity and the foreign key of the non-
primary entity.

Case 4: The data item is an attribute of a non-primary entity, which is linked to the primary
entity through a composite entity.

Case 5: The data item is an attribute of a composite entity that is not linked directly to the
primary entity.

Case 6: The data item is an attribute of a composite entity that is linked directly to the pri-
mary entity.

Case 7: The data item is derived from attributes in a non-primary entity through a calcula-
tion or a series of calculations.

Case 8: The data item is derived from previously validated data items through a calculation
or a series of calculations.

Case 9: The data item is obtained from system resources.

Detailed Explanation
Consider a typical business data model in which a Customer places one or more Orders. Each
order may include one or more Products. Each Order generates one or more Invoices, since there
is a possibility of partial shipments and backordered Products. Each Invoice lists one or more
Products. An entity-relationship diagram of this simple scenario appears in Figure 1.

The entity-relationship diagram is
characterized by the following:

• Because a Customer can
submit multiple orders, but an
Order can be submitted only
by a single Customer, the
Customer table is linked to
the Order table through a Cus-
tomer# foreign key in the Or-
der table.

• Because an Order can gener-
ate multiple Invoices, but an
Invoice can be associated with
at most a single Order, the
Order table is linked to the
Invoice table through an Or-
der# foreign key in Invoice.

• A Product can be included on
many Orders, and an Order
can include many products, so
the tables are linked through a
composite entity (also called
an associative entity), Order
Includes, that has a composite

Figure 1: Customer Order Entity-Relationship Diagram.

 Parker

 817

key made up of Order# and Product#.

• Similarly, a Product can be included on many Invoices, and an Invoice can include many
Products, so the tables are linked through the composite entity, Shipment Includes, that has a
composite key made up of Invoice# and Product#.

The examples in the cases below are based on the above diagram, and will include the portion of
the entity-relationship diagram that exemplifies the situation to which the case refers. Each case
will explain the location of the data item that is being validated in relation to the location of the
primary entity. It will then show a graphical depiction of the scenario through a small-scale en-
tity-relationship diagram, followed by the syntax to be followed in the textual tracing. An exam-
ple of a textual tracing for one of the attributes is then provided, accompanied by the portion of
the example entity-relationship diagram or reference.

An alternative graphical tracing is also included. An informal survey of students indicates a slight
preference for the graphical tracing, as it may be easier to interpret. The textual tracing, however,
forces them to more carefully consider the way in which the entities are linked. Both alternatives
are presented here in order to allow the instructor choose the method that best suits their teaching
approach.

Data Model Validation Approach

818

 Parker

 819

Data Model Validation Approach

820

 Parker

 821

Data Model Validation Approach

822

Example Validation of the Customer Invoice
The following validation is based on the E-R Diagram presented previously, and is a validation of
the customer invoice that appears in Figure 2:

Report: Customer Invoice

The Customer Invoice involves six entities and composite entities,

CUSTOMER

ORDER

ORDER INCLUDES

PRODUCT

CUSTOMER NO.: 12223 INVOICE NO.: 06275
NAME: Clarence Walters DATE: 2/5/04
ADDRESS: 133 6th ST. ORDER NO.: 41284
 Austin, TX 28384
PRODUCT QTY. QTY. QTY. UNIT TOTAL

NO. DESCRIPTION ORD. SHIP. BACK. PRICE PRICE
D331 Computer Desk 3 3 350.00 1050.00
B118 Bookcase 5 3 2 200.00 600.00
L221 Table Lamp 1 1 125.00 125.00

 TOTAL AMOUNT 1775.00
 5.0% DISCOUNT 88.75
 AMOUNT DUE 1686.20

Figure 2: Sample Customer Invoice

 Parker

 823

INVOICE

SHIPMENT INCLUDES

The primary entity is INVOICE.

The data items are accounted for in the E-R Diagram as follows:

• CUSTOMER NO: attribute C# of entity CUSTOMER.

o CUSTOMER is linked to ORDER via the C# foreign key in ORDER.

o ORDER is linked to INVOICE through the O# foreign key in INVOICE

• NAME: attribute C_NAME of entity CUSTOMER.

o CUSTOMER is linked to ORDER via the C# foreign key in ORDER.

o ORDER is linked to INVOICE through the O# foreign key in INVOICE.

• ADDRESS: attribute C_ADDR of entity CUSTOMER.

o CUSTOMER is linked to ORDER via the C# foreign key in ORDER.

o ORDER is linked to INVOICE through the O# foreign key in INVOICE.

• INVOICE NO: attribute I# entity INVOICE.

• DATE: obtained from system date.

• ORDER NO: attribute O# of entity INVOICE and entity ORDER

o ORDER is linked to INVOICE through the O# foreign key in INVOICE.

• PRODUCT NO: attribute P# of entity PRODUCT.

o PRODUCT is linked to INVOICE through the P#, I# composite primary key in compos-
ite entity SHIPMENT INCLUDES.

• DESCRIPTION: attribute P_DESCR of entity PRODUCT.

o PRODUCT is linked to INVOICE through the P#, I# composite primary key in compos-
ite entity SHIPMENT INCLUDES.

Data Model Validation Approach

824

• QTY ORD: attribute ORDER_PRODUCT_QTY of composite entity ORDER INCLUDES.

o ORDER INCLUDES is linked to ORDER through the O# portion of the O#, P# compos-
ite primary key in ORDER INCLUDES.

o ORDER is linked to INVOICE through the O# foreign key in INVOICE.

• QTY SHIP: attribute SHIPMENT_PRODUCT_QTY of composite entity SHIPMENT

INCLUDES.

o SHIPMENT INCLUDES is linked to INVOICE through the I# portion of the composite
primary key in SHIPMENT INCLUDES.

• QTY BACK: obtained from the calculation ORDER_PRODUCT_QTY minus

SHIPMENT_PRODUCT_QTY (see previous two items to trace links).

• UNIT PRICE: attribute P_PRICE of entity PRODUCT.

o PRODUCT is linked to INVOICE through the P#, I# composite primary key in compos-
ite entity SHIPMENT INCLUDES.

• TOTAL PRICE: obtained by multiplying QTY SHIP by UNIT PRICE.

• TOTAL AMOUNT: obtained by summing the TOTAL PRICE column.

• DISCOUNT: obtained from the calculation attribute C_DISCOUNT of entity CUSTOMER
multiplied by TOTAL AMOUNT.

o CUSTOMER is linked to ORDER via the C# foreign key in ORDER.

o ORDER is linked to INVOICE through the O# foreign key in INVOICE.

• AMOUNT DUE: obtained by subtracting DISCOUNT from TOTAL AMOUNT.

Conclusion
This approach arose from a personal need to provide students with a formal approach to validate
their data models. A database designer must insure that all necessary forms and reports can be
generated from the available entities and attributes, because a design is of little or no use if the
final deliverable is incapable of satisfying all specified query and reporting requirements. As no
instructional validation techniques were available, this approach was developed and has evolved
over time. Over several years of use it has proved to be useful in not only validating student mod-
els, but also in enhancing student understanding of how tables are joined to form relationships.
Further, experience has shown that students who perform a thorough validation experience fewer
problems when developing queries that involve multiple tables, and this in turn makes the devel-
opment of forms and reports much less stressful. While this technique may or may not be practi-
cal in a real-world situation, it has proven to be very useful as an instructional method. Various

 Parker

 825

approaches such as textual or graphical tracing can be utilized, but the underlying concept of de
termining which attributes account for the field values on forms and reports, which entities are
associated with those attributes, and how those entities are linked to an integral or primary entity
serves to validate the completeness of a data model. It is hoped that by sharing this technique oth-
ers who teach relational database design will finally have a method with which to better explain
the concept of data model validation and its importance in the database life cycle.

References
Balouch, M.Q. (1999). Information system and database for foreign department office. Retrieved December

10, 2003 from http://www.geocities.com/rehanaq/bachelor/lam.html

Chundur, S. (1991). Database design methodology summary. Retrieved December 10, 2003 from
http://homepages.uc.edu/~chundusa/databasemethodology.html

Connolly, T., & Begg, C. (1998). Database systems: a practical approach to design implementation and
management (2nd ed.). Reading, Massachusetts: Addison-Wesley.

Haerder, T. (1978). Implementing a generalized access path structure for a relational database system. ACM
Transactions on Database Systems (TODS), 3 (3), 285–298.

Hoffer , J.A., Prescott, M.B., & McFadden, F.R. (2002). Modern database management (6th ed.). Upper
Saddle River, New Jersey: Prentice-Hall, 2002.

Kroenke, D.M. (2003). Database concepts. Upper Saddle River, New Jersey: Prentice-Hall.

Kroenke, D.M. (2004). Database processing: Fundamentals, design, and implementation (9th ed.). Upper
Saddle River, New Jersey: Prentice-Hall.

Rob, P. & Coronel, C. (2001). Database systems: Design, implementation, and management (5th ed.). Bos-
ton: Course Technology.

Teorey, T.J., & Fry, J.P. (1980). The logical record access approach to database design. ACM Computing
Surveys (CSUR), 12 (2), 179–211.

Wilson, J.D. (1986). Problems teaching database design with information complexity to information sys-
tems undergraduates. ACM SIGCSE Bulletin, Proceedings of the Seventeenth SIGCSE Technical Sym-
posium on Computer Science Education, 18 (1), 2-7.

Zamperoni, A., & Lohr-Richter, P. (1993). Enhancing the quality of conceptual database specifications
through validation. Technical Report 93-17, University of Leiden, The Netherlands, Retrieved Decem-
ber 10, 2003 from http://citeseer.nj.nec.com/zamperoni93enhancing.html

Biography
Kevin R. Parker is an Associate Professor of Computer Information Systems at Idaho State Uni-
versity. He has taught courses in both computer science and information systems over the course
of his thirteen years in academia. Dr. Parker’s research interests include e-commerce marketing,
competitive intelligence, knowledge management, and information filtering. He has published
several papers in these areas including publications in Marketing Intelligence and Planning and
the Journal of Information Systems Education. Dr. Parker’s teaching interests include program-
ming languages, data structures, and database management systems. Dr. Parker holds a Ph.D. in
Management Information Systems from Texas Tech University

http://citeseer.nj.nec.com/zamperoni93enhancing.html
http://homepages.uc.edu/~chundusa/databasemethodology.html
http://www.geocities.com/rehanaq/bachelor/lam.html

