

 Int. J. Knowledge and Learning, Vol. 2, Nos. 1/2, 2006 119

 Copyright © 2006 Inderscience Enterprises Ltd.

Criteria for the selection of a programming language
for introductory courses

Kevin R. Parker* and Thomas A. Ottaway
Idaho State University
Campus Box 8020
Pocatello, ID 83209, USA
E-mail: parkerkr@isu.edu
E-mail: ottathom@isu.edu
*Corresponding author

Joseph T. Chao
Bowling Green State University
Bowling Green, OH 43403, USA
E-mail: jchao@cs.bgsu.edu

Abstract: Historically, the selection of a programming language for an
introductory programming course has been a process consisting of faculty
evaluation, discussion, and consensus. As the number of faculty, students, and
language options grows, this process is likely to become increasingly unwieldy.
In addition, the process lacks structure and cannot be easily replicated. The
selection process will, in all likelihood, be repeated every two to three years.
Providing a structured approach to the selection of a programming language
would yield a more thorough evaluation of the options available and a more
easily justified selection. Developing and documenting an exhaustive set of
selection criteria, and an approach for the application of these criteria, will
allow the process of language selection to be more easily repeated in the future.
This paper presents a comprehensive set of criteria that should be considered
when selecting a programming language for a teaching environment, and
proposes several approaches for the application of these criteria.

Keywords: programming language selection; introduction to programming;
teaching programming; programming language evaluation.

Reference to this paper should be made as follows: Parker, K.R.,
Ottaway, T.A. and Chao, J.T. (2006) ‘Criteria for the selection of a
programming language for introductory courses’, Int. J. Knowledge and
Learning, Vol. 2, Nos. 1/2, pp.119–139.

Biographical notes: Dr. Kevin R. Parker is Professor of Computer Information
Systems at Idaho State University, having previously held an academic
appointment at Saint Louis University. He has taught both Computer
Science and Information Systems courses over the course of his 14 years in
academia. Dr. Parker’s research interests include e-commerce marketing,
competitive intelligence, knowledge management, the semantic web, and
extreme programming. He has published in such journals as Journal of
Information Technology Education, Journal of Information Systems Education,
International Journal of Internet and Enterprise Management, and Journal of
Issues in Informing Science and Information Technology. Dr. Parker’s teaching

 120 K.R. Parker, T.A. Ottaway and J.T. Chao

interests include web development technologies, programming languages, data
structures, and database management systems. Dr. Parker holds a BA in
Computer Science from the University of Texas at Austin (1982), an MS in
Computer Science from Texas Tech University (1991), and a PhD in
Management Information Systems from Texas Tech University (1995).

Dr. Thomas A. Ottaway is Associate Professor in the Computer Information
Systems Department at Idaho State University, having previously held
academic appointments at Kansas State University and the University of
Montana. He holds a BS in Computer Science from Wichita State University
(1991), an MS in Management Information Systems from Texas Tech
University (1993), and a PhD in Production/Operations Management from
Texas Tech University (1995). He has published in such journals as Decision
Sciences, International Journal of Production Research, Journal of Economics
and Finance, and Journal of Financial and Economic Practice. Dr. Ottaway’s
teaching interests include data and telecommunications networks as well as
computer programming.

Dr. Joseph T. Chao is Assistant Professor of Computer Science at Bowling
Green State University. He has taught courses in all aspects of the software
development life cycle including programming, systems analysis and design,
database systems, usability engineering, software engineering, and agile
software development. Dr. Chao has seven years of industry experience
in software development, including three years as Director of Software
Development. His research focus is on software engineering with special
interests in programming languages, object-oriented analysis and design,
software modelling, agile methodologies, and extreme programming. Dr.
Chao holds an MS in Operations Research from Case Western Reserve
University and a PhD in Industrial and Systems Engineering from the Ohio
State University.

1 Introduction

The programming language used in teaching an introductory programming course
can have a great impact on how the course is taught as well as its effectiveness. Language
selection has long been a difficult and unstructured process. Fewer issues in the world
of software development are as strategic, political, and contentious as the choice of
programming language (Jensen, 2004). Over the years various languages have been
viewed as contenders for the primary programming languages in IS and CS programmes,
as seen in Wile’s (2002) timeline of the succession of programming languages (and
language types) throughout their evolution. Programming language selection is
usually no more systematic than a series of faculty meetings focusing on informal
language assessment, debate, and eventual consensus. With the diversity of high-level
programming languages available, selecting the ‘right’ language for a computing-focused
curriculum or course can be a perplexing process (Tharp, 1982). For many reasons, such
as the manner in which students approach problems or scarce computing resources, the
selection of a programming language has ramifications throughout the curriculum (Tharp,
1982). As the number of faculty, students, and language options grows, language
selection is likely to become increasingly complex. Furthermore, the selection process
currently lacks structure and thus cannot be easily replicated. Because the selection

 Criteria for the selection of a programming language 121

process is often repeated every two to three years, developing and documenting a set
of selection criteria, and a process for the application of these criteria, will result in a
process that will be more easily repeated in the future. A structured approach to the
selection of a programming language will enable a more thorough evaluation of the
available options and a more easily validated selection.

Several factors must be considered when selecting a programming language, and
whilst different curricula place greater emphasis on different factors, all must be
considered. We seek to develop a comprehensive set of selection criteria and a process
for the application of these criteria to evaluate programming languages to be used in
programming classes. The selection criteria must take into account the programming
features of each language under consideration, the appropriateness of each of these
features for beginning (and perhaps advanced) programming courses, the present and
future industry acceptance of each language, the availability and quality of textbooks, the
costs associated with adopting each language, the infrastructure and support implications
of each language, and the impact of the decision on the tactical and strategic direction of
the department and curriculum.

2 Literature review

The literature review begins by discussing the lack of experimental comparisons of the
usability of programming languages, accompanied by a brief mention of those that do
exist. It then points out that many factors must be considered when selecting a language,
even before formal criteria can be considered. Note that whilst some of these factors will
be included in the criterion, they may also be used as a pre-evaluation tool to narrow the
field of choices.

McIver (2002) indicates that although there are very strong feelings on the subject of
first programming languages, few evaluative studies of languages or development
environments for introductory programming classes exist. Further, there have been few, if
any, empirical tests comparing different languages (McIver, 2000). Wilson (1997) agrees
that whilst debates over the relative merits of various programming languages are quite
common, there have been relatively few experimental comparisons of the usability of
different programming languages.

Wilson (1997) was able to find only one such study, an experiment by Szafron and
Schaeffer (1996) to measure the usability of parallel programming systems. Another
study, conducted by Murtagh and Hamilton (1998), performed a one-on-one comparison
of the impact of two languages on the success of students in an introductory
programming class, but their approach requires an instructor proficient in both languages
and is not easily extended to more than two languages at a time. Various arguments have
been made for the use of a particular language or particular paradigm in introductory
classes (Kölling et al., 1995; Conway, 1993). However, McIver (2002) points out that
whilst anecdotal evidence from introductory programming courses is widely available
(Reed, 2001; Allen et al., 1996; Popyack and Herrmann, 1993), and individual language
features have been studied from a cognitive point of view (Soloway et al., 1989; Sime
et al., 1973), the determination of which language should be used for teaching
introductory programming remains a contentious issue.

 122 K.R. Parker, T.A. Ottaway and J.T. Chao

One explanation offered for the scarcity of studies is that the variability among
programmers would render any study meaningless (Wilson, 1997). Another is that the
differences between domains are too great to perform a meaningful study. Wilson (1997)
disagrees with the premise that such studies are not possible but does not offer any
solutions. Comparing languages is a difficult task, especially when the languages do not
share the same paradigm (McIver, 2000). Establishing proper criteria for the comparison
is difficult not only because a question of what to measure exists, but also because the
criteria may favour one language over another (McIver, 2000). McIver (2002) points out
that in educational settings the demands of various courses and curricula make it
problematical, if not impossible, to compare different languages. Further, different
courses generally have sufficiently different objectives to make language comparisons
virtually meaningless (McIver, 2002).

2.1 Factors to be considered

As noted earlier, many factors must be considered prior to beginning the language
selection process. Although these factors eventually may be included in the evaluation
criteria, they may also be used to narrow the field of choices. For example, the selection
will almost certainly be guided by the methodology or paradigm being taught and the
number of languages to be used throughout the series of programming courses. Another
decision is whether the department wishes to use a real language or a customised teaching
language. Finally, the cost of changing programming languages must be considered.

2.2 Methodology or paradigm

The selection of the programming paradigm, which determines what should be taught,
must precede the selection of the first language, which influences how to teach
it (Esendal, 1994). The paradigm defines the framework within which the students
are taught. Programming paradigms are differentiated by the concepts that they
emphasise (Watt, 2000). Imperative programming emphasises procedures operating
on (unencapsulated) variables; objectoriented programming emphasises methods
operating on (encapsulated) objects; functional programming emphasises functions
operating on immutable values; logic programming emphasises predicates operating on
immutable values; concurrent programming emphasises processes exchanging messages
(Watt, 2000). Bowman (1994) contends that the central consideration when evaluating
introductory programming courses should not be the languages but rather the selection of
a theory or methodology of programming to teach. Wolz (1997,p.12) states that the
“focus on language is misguided because it forces an emphasis on the mechanics of
expressing key ideas rather than focusing on the key ideas themselves”. Additional
considerations include whether language constructs should be learned separately from or
concurrently with programme design, how to determine the appropriate balance between
programming in the large and programming in the small, and whether a single language
should be taught throughout the programming course sequence as opposed to multiple
languages (Wallace et al., 1997).

The related issue of a single language versus multiple languages is another critical
decision. The number of languages to cover in a course or curriculum involves a trade-off
between breadth and depth (King, 1992). Some educators prefer to cover fewer languages
in more detail, assuming students will learn enough about the languages to be able to use

 Criteria for the selection of a programming language 123

them for nontrivial programmes, whilst other educators attempt to show students the
breadth of the programming field by exposing the student to as many languages as
possible (King, 1992).

2.3 Real or customised

Regardless of the paradigm, a choice must be made between professional-grade and
customised languages. A professional-grade language is one used in industry and
is taught in its entirety (with the exception of very advanced features), via a commercially
available environment (Esendal, 1994). A professional-grade language like Java or
C++ provides students with experience with a real-life environment. Any problems
encountered are those that will be encountered in real life, preparing students better for
their professional lives (Esendal, 1994).

A customised language is one developed especially for teaching purposes or one
that is a subset of a real language (Esendal, 1994). Customised languages such as Haskell
and Eiffel separate learning programming from learning the details of a particular
language (de Raadt et al., 2003), minimising the technical problems that may distract
from the learning process. Once students learn the fundamentals, they can apply their
programming knowledge to any language (Esendal, 1994).

2.4 Cost of changing

Some educators naively think that there is little cost in changing programming languages
because there are no serious consequences if a decision turns out badly. Lee and Phillips
(2002) point out, however, that considerable overhead occurs in adopting a particular
language, including preparation of lecture materials, developing projects and student
exercises, evaluating and learning development environments and installing the chosen
language, requesting and evaluating textbooks, and training personnel. Such overheads
indicate that care should be taken when choosing a language because that choice is likely
to impact the educator for several years.

3 Selection criteria

The programming language selection criteria appear in Table 1. These criteria were
derived through a thorough review of the literature, and each will be justified by a brief
review of the supporting literature.

Each of the criteria in Table 1 has been used in one or more previous studies that
evaluate programming languages.

 124 K.R. Parker, T.A. Ottaway and J.T. Chao

Table 1 Language selection criteria

Criterion

Reasonable financial cost for setting up the teaching environment

Availability of student/academic version

Availability of textbooks

Language’s stage in life cycle

System requirements of student/academic/full version

Operating system dependence

Open source (versus proprietary)

Academic acceptance

Industry acceptance

Marketability (regional and national) of graduates

Easy to use development environment

Ease of learning basic concepts

Support for target application domain (such as scientific or business)

Full-featured language (versus scripting)

Support for teaching approach (function first, object first or object early)

Object-oriented support

Good debugging facilities

Support of web development

Support for safe programming

Advanced features for subsequent programming courses

Availability of support

Training required for instructors and support staff

Anticipated programming experience level for incoming students

3.1 Reasonable financial cost

This criterion refers to the price to acquire the programming language or the development
environment. This may involve individual packages or a site license for a network
version. There may be an academic discount for educational institutions; there may be an
alliance in which the university or department can enroll; or there may even be a free,
downloadable version. Cost is often included in the overhead involved in adopting a
particular language. Lawlis (1997) enumerates the various types of costs that may be
associated with the choice of development products, including purchase price, training
costs, installation costs, cost of additional hardware, and cost of additional people needed.
Martin (2003), de Raadt et al. (2002; 2003), Tolmach (1999), and Stephenson (2000) all
include costs in their lists of factors affecting programming language choice. Lee and
Phillips (2002) expand the definition of costs to include all of the overheads associated
with adopting a particular language, including preparation of lecture materials,
developing projects and student assignments, installing and learning the development
environment, requesting and evaluating textbooks, and training personnel.

 Criteria for the selection of a programming language 125

3.2 Availability of student/academic version

Although the availability of a student version or academic version is not cited in many
studies, it has always been a concern when we have been involved in programming
language selection. If a student version is unavailable and the department uses a
network-based version, then students may be forced to work on their assignments in
campus labs, restricted by hours of operation, availability of transportation, etc. If the
academic version is stripped down, then the benefit to the students may not be as great,
but this factor should at least be evaluated.

De Raadt et al. (2003) consider availability and/or cost to students. A recent request
for information posted on the ISWorld ListServ (Tomblin, 2002) regarding programming
language choice for introductory classes elicited multiple responses that alluded to the
availability of a student version or academic discounts. One posting noted that an
inexpensive student version was a major benefit of a particular language. Another posting
noted that if software was network-based then students would not have access to it on
their home computers. That posting went on to point out that some programming
languages are, however, disseminated as a student version that allows students to install
and use it on their home computers.

3.3 Availability of textbooks

The availability of textbooks may be affected by many additional factors. The life-cycle
stage of the language impacts the availability of textbooks, particularly when the
language is relatively new. When Visual Basic.Net was first released, few quality
textbooks were available, but as the language has matured more have been published.
The academic acceptance of a language also plays a large role in the availability
of textbooks because a larger potential market exists for a text that deals with a
more widely used language. Finally, textbook availability may also be affected by the
teaching approach used. For example, functions-first, objects-first, or objects-early are all
approaches used to teach object-oriented languages, but few recent texts present the
material from a functions-first perspective. Availability of reference books should also be
taken into account (Lee and Stroud, 1996).

Watt (2000) includes textbook availability as one of the resource issues to be
considered, whilst McIver and Conway (1996) include the assessment of textbook quality
as one of the usual considerations when evaluating potential languages. An easy-to-find,
appropriate text is one language selection criteria listed by de Raadt et al. (2002; 2003).

3.4 Stage in life cycle

As noted above, a programming language’s stage in the programming language life cycle
should also be considered. In addition to affecting textbook availability, it may also
impact the widespread use of a language in both industry and academia. Universities may
prefer a language that is still in its earlier stages, rather than one like COBOL or
FORTRAN, which are in their declining years.

Not to be confused with the programme development life cycle, the programming
language life cycle, as described by Sharp (2002), is based on the natural principles
of growth, maturation, and decay. The processes of natural advantage and evolution
operate in the world of programming languages in the same way that they operate in the

 126 K.R. Parker, T.A. Ottaway and J.T. Chao

biological domain, but in the case of languages the main forces are efficiency of
expression versus profitable adoption. New languages compete with older languages. If a
language is general purpose, functional, expressive, and marketed, then it will most likely
be adopted. Once adopted, the application market drives language evolution.

Sharp’s programming language life cycle begins with the conception stage, when
a language is conceived to fill deficiencies not met by existing languages. That is
followed by the adoption phase, as programmers perceive that the language will improve
their efficiency. As the language stabilises and exhibits fewer defects, there is general
acceptance. The maturation stage is characterised by a greater demand for functionality
than for efficiency, which leads to the inefficiency stage, characterised by increased
functionality but also a market fragmented by disparate vendor implementation of
standards. The decline continues in the deprecation stage as development becomes more
costly and inefficiencies lead to consideration of alternatives. Finally, in the decay stage,
newer languages that lack some features but are faster and more efficient appear on the
scene and displace their precursors.

3.5 System requirements of student/academic/full version

The system requirements of the programming language often play a role in the selection
process. This includes hardware as well as operating system requirements. The amount
of hard disk space needed to install the software, the operating system required, and
the memory to run the software all factor into the decision. For example, some of the .Net
framework requirements include Windows NT 4.0 or later, a Pentium II 450 MHz
processor (minimum), 3.5 GB of available disk space, and minimum 160 MB RAM for
Windows XP Professional. Many student and lab machines may be unable to meet the
minimum requirements of some languages. Several studies list hardware or software
requirements among the criteria to be considered. Tharp (1982), McIver and Conway
(1996), Stephenson (2000), Prechelt (2000), and de Raadt et al. (2003) all include some
variation of this factor.

3.6 Operating system dependence

This criterion refers to the dependence of a language on a particular operating system
platform, often referred to as portability. For example, any of the languages supported
by the .Net framework, including Visual Basic, C++, C#, etc., depend on the Windows
operating system. Other languages, such as Java, are platform independent, and
development environments for Java can be found for a variety of operating systems. This
may be of concern to faculty members who may or may not prefer to be bound to a
specific operating system. Howatt (1995), Paprzycki (2002), and Riehle (2003) all
consider portability from an operating system standpoint, whilst Wile (2002) refers to it
as the computing platforms on which a language runs.

3.7 Proprietary/open source

This refers to the entity that controls the evolution of a language and its associated
development environment. For example, Microsoft is responsible for additions, deletions,
or modifications in any of the languages supported by the .Net framework. Sun is
responsible for the ongoing evolution of the Java language. On the opposite end of the

 Criteria for the selection of a programming language 127

spectrum, PHP is an open-source language and can be easily implemented by any
member of the open-source community. Both Stephenson (2000) and Riehle (2003)
include open source in their criteria.

3.8 Academic acceptance

Academic acceptance refers to the popularity of a language at other academic institutions.
This can be assessed by current use or projected use at other institutions. For example,
the growth in popularity of object-oriented programming and the recent decision by the
College Board to move the Advanced Placement Computer Science programme to Java
have led to an increasing number of universities, colleges, and secondary schools
adopting Java as the programming language for their introductory programming courses
(Roberts, 2004). As a result, in December 2003, the ACM Education Board, in
conjunction with the ACM Special Interest Group on Computer Science Education,
initiated the ACM Java Task Force to study and report on how to teach the language
more effectively. A 2002 survey reported that most Information Systems programmes
(62%) still teach Visual Basic (VB6 or VB.Net) as their first language, whilst 51% of the
respondents require Java either as a first or second language (Watson, 2002).

3.9 Industry acceptance

Industry acceptance refers to the market penetration (Riehle, 2003) of a particular
language in industry, i.e., the use of a language in business and industry. Often referred
to as industrial relevance, this can be assessed based on current and projected usage,
as well as the number of current and projected positions. Stephenson (2000) claims that
this factor has the greatest influence in language selection, as indicated by 23.5%
of schools that participated in his study. Lee and Stroud (1996) include a language’s
usefulness and acceptability to the real world. A 2001 census of all Australian
universities revealed that perceived industry demand was the major factor in the choice of
an introductory language (de Raadt et al., 2003). McIver and Conway (1996) refer to
language popularity as a typical consideration when evaluating potential teaching
languages. King (1992) agrees that many language decisions are made on the basis of
current popularity or the likelihood of future popularity, but Howland (1997) objects that
too many languages are chosen simply because of their current popularity rather than for
sound pedagogical reasons.

A 2004 study in InfoWorld indicated that Java is the language most used by
professional developers (64%) followed by Visual Basic at 56% and C++ at 55%
(McAllister, 2004). A 2005 survey commissioned by Tiobe Software (2005) provided
conflicting results, reporting that C is the most used language (18.630%), followed by
Java (16.981%) and Perl (10.197%). Industry acceptance affects a related criterion –
marketability.

3.10 Marketability (regional and national)

Marketability refers to the employability of graduates. This may refer to regional or
national/international marketability, based on the placement of a programme’s graduates.
Language selection is often driven by demand in the workplace, i.e., what employers

 128 K.R. Parker, T.A. Ottaway and J.T. Chao

want. Not only are marketable skills important in future employability, but students are
more enthusiastic when studying a language they feel will increase their employability
(de Raadt et al., 2003).

This criterion is stressed in several studies. The census of introductory programming
courses conducted by de Raadt et al. (2003) emphasises the importance of employability.
In fact, the most commonly listed factor in language selection (by 56% of the
participants) was the desire to teach a language that provides graduates with marketable
skills. Watt (2000) discusses the need for transferable skills that will be useful in
whatever career the student chooses to pursue. Emigh (2001) agrees that the primary
concern in language evaluation must be the demand in the workplace and argues that
when deciding on a new language one must take into account employers’ expectations of
graduates. Further, graduates’ marketability can be improved by exposing them to several
languages (de Raadt et al., 2003). They cite, for example, that a progression from C to
C++ to Java will qualify a graduate for more advertised positions than exposure to any
single language in isolation.

Emigh (2001) points out a caveat that must be considered when assessing both
industry acceptance and marketability. Generally, four to five years pass between a
student’s beginning a programme of study and attaining a position using his or her
programming skills. Even if a curriculum teaches a newer programming language, there
is no guarantee that employers will still be looking for that language when the student
enters the workforce.

3.11 Development environment

The development environment is a programmer’s virtual workbench, and can improve
or inhibit productivity (Jensen, 2004). Development environments range from simple
text editors and command-line compilers to fully interactive and Integrated Development
Environments (IDE) (McIver, 2002). Kölling et al. (1995) point out that the IDE
should be easy to use so that the students can concentrate on learning programming
concepts rather than the environment itself. Murtagh and Hamilton (1998) agree that
the development environment must be one that novice students are able to figure out.
Eisenstadt and Lewis (1992) take it a step farther, citing evidence that well-designed
programming environments assist students in learning to programme.

Although McIver (2002) indicates that there have been few evaluative studies of
development environments for introductory classes, the IDE is cited in several studies as
a factor in language selection. Lee and Phillips (2002) state that evaluating various IDEs
is one of the overheads in language evaluation. Howland (1997) lists the need for an IDE
as one of his criteria. Jensen (2004) points out that as professional-grade languages
become more sophisticated and complex, IDEs become more intimidating. Educators
who experienced the transition from Visual Basic 6 to Visual Basic.Net are familiar with
increasing IDE complexity.

3.12 Ease of learning fundamental concepts

The learning curve associated with each language or IDE differs greatly between
languages. The most obvious recent example is the steep increase in the learning curve
from Visual Basic 6 to Visual Basic.Net. Basic concepts include the sequence, selection,
and iteration control structures, as well as arrays, procedures, basic input/output, and file

 Criteria for the selection of a programming language 129

manipulation. Kölling et al. (1995) note that a language should support clean, simple, and
well-defined concepts; the language should have an easily readable, consistent syntax.

The ease of learning fundamental programming concepts is cited in several studies as
a crucial factor in language selection. The first programming language must serve as a
vehicle for exploring fundamental programming design concepts of sequence, selection,
iteration, variables, and arrays (Wolz, 1997; Bishop-Clark and Donohue, 1999), so
educators must select a language that supports and clearly expresses those fundamental
concepts (Watt, 2000). Wang (2001) and Traxler (1994) also discuss the importance of
fundamental programming concepts.

In addition to ease of learning, the language must be characterised by concise syntax
and straightforward semantics (Conway, 1993). Clarity of syntax and semantics are cited
by McIver and Conway (1996), Tolmach (1999), Paprzycki (2002), and Fergusson (2003)
as essential considerations in the selection of a language. Milbrandt’s (1993) criteria
include both simplicity of syntax and ease of use. Ease of use and learning is also cited by
both Howatt (1995) and Cunningham (2004). In a survey conducted by Stephenson
(2000), 13.1% of the respondents indicated ease of use as a primary factor in language
selection. The Ad Hoc AP CS Committee (2000) cites a need for a language and a
programming environment that are reasonably simple, noting that students can be easily
sidetracked by awkward syntax, complex language semantics, or expansive programming
environments. The committee report suggests that a simple and clear context can
encourage students to develop high-level thinking skills.

3.13 Supports target application domain

This criterion is included to assess how well a language supports programming for
specific applications (Howatt, 1995). Sometimes referred to as ‘problem domain’, this is
not to be confused with Domain Specific Languages. Examples of application domain
include FORTRAN’s support for scientific programming, COBOL’s support for business
data processing, and RPG’s support for report generation.

Howatt (1995) identifies application domain criteria as one of the items in
his language evaluation criteria, and defines it as the designers’ intended use of the
language. He points out that most discussions of language evaluation either treat this
category in very general terms or fail to address it entirely. Wharton (1995) prefers the
term ‘problem domain’ in his comparison of FORTRAN and C with respect to scientific
programming. AlGhamdi and Urban (1993) propose 12 areas of analysis for comparing
and assessing programming languages, including philosophy of the design, defined as the
intent of the designers when designing the language. Shaw et al. (1981) assess the
software engineering characteristics of multiple languages by rating the core of each
language that captures the essential properties of a language and the intent of language
designers about its intended use. Whatever term is used, this factor can play a pivotal role
in language selection.

3.14 Scripting or full-featured language

Programming educators must also choose between full-featured and less complex
languages. Prechelt (2000) refers to them as conventional programming languages and
scripting languages. Some programming instructors prefer scripting languages like

 130 K.R. Parker, T.A. Ottaway and J.T. Chao

Python because they offer sufficient richness to cover most of the requirements of an
introductory course whilst reducing the complexity of the development environment and
avoiding many other implementation issues. Warren (2001,p.214) states that JavaScript
has “sufficient richness to cover most of what is required in an elementary course and it is
a real language with immediate application for the student”. He goes on to point out that
JavaScript also uses a simple editing environment, reduces language complexity, and
improves consistency. Full-featured languages, however, offer a more complete set of
language features that an instructor may want to incorporate. Some of these issues may
be related to the next criterion, the choice between teaching basic concepts and teaching a
specific language.

Full-featured or conventional programming languages like C++ and Java are
compiled rather than interpreted, and they require typed variable declarations (Prechelt,
2000). On the other hand, scripting languages such as Perl, Python, Rexx, and Tcl are
generally interpreted rather than compiled, at least during the programme development
phase, and they typically do not require variable declarations (Prechelt, 2000).

MVI Solutions (2004) points out that whilst scripting languages are growing in
popularity among professional programmers, serious questions arise about performance,
software reuse, and integration with components written in other languages. Some
debate exists as to whether scripting languages support the learning of core
programming concepts (Stephenson, 2000). However, Prechelt’s (2000) comparison of
the two language types reports that designing and writing programmes in scripting
languages takes less than half as much time as conventional languages, and the resulting
programmes are generally half as long. Prechelt (2000) also observes no clear differences
in programme reliability among the language groups but notes that the typical
script programme consumes about twice as much memory as a C or C++ programme,
although Java programmes consume three or four times as much memory as C or
C++ programmes.

Although web development features are the focus of a later criterion, a discussion of
scripting languages must mention client-side or server-side scripting. As future
professionals, students in the computing disciplines have to learn to develop internet
applications; skills that can be acquired only when students understand client-server
computing through learning HTML, JavaScript, and Java applets (Wang, 2001). As
the internet continues to grow, demand for skills in scripting and markup languages
also increases (de Raadt et al., 2002; 2003). The many job postings requiring
scripting/markup languages indicate that the modern programming degree should include
these languages and the web-related concepts surrounding them (de Raadt et al., 2002).

3.15 Teaching approach support

As noted above, this criterion refers to the assessment of how well a language supports
the teaching approach preferred by the faculty, i.e., whether the intent is to teach
programming concepts, with the language simply being a vehicle through which those
concepts are reinforced, or whether the intent is to teach the features of a particular
language, such as the many user interface controls offered by Visual Basic. King (1992)
asserts that the disagreement about whether programming courses should focus on basic
programming concepts as opposed to a particular language is one of the fundamental
reasons for the diversity of programming courses and textbooks.

 Criteria for the selection of a programming language 131

Many studies echo the importance of concepts over language. Tomblin (2002) states
that the focus of programming classes should not be so much the language as it should be
the concepts and good programming practices that need to be taught. Kölling et al. (1995)
note that the aim of their programming courses is to educate students in such a way that
they understand the underlying concepts, and are thus able to write good programmes in
any language. Other studies discuss the use of Java from this perspective. Warren (2001)
reflects that whilst many features offered by Java are necessary for industrial-strength
programmes, they are simply ‘gratuitous complexity’ in teaching programming concepts.
Collins (2002) discusses Java’s suitability to demonstrate and convey the concepts that
are important across a programming curriculum.

Other programmes take the alternate approach and stress teaching individual
language features over programming concepts. Lee and Phillips (2002) assert that most
students regard training in a specific language more useful than an education in
programming concepts. Further, Emigh (2001) notes that many universities are reacting
to student demand to be taught the technicalities of a particular language rather than
programming concepts.

3.16 Object-oriented support

This criterion assesses how well a programming language supports basic Object-Oriented
(OO) concepts like abstraction, polymorphism, inheritance, and encapsulation. The
evaluator should consider that some languages that profess to be object-oriented are
merely object-based, meaning that they fail to provide support for all of the OO features
listed above. Again, if an OO language is selected, the instructor must choose between an
objects-first approach and an objects-early approach.

The Ad Hoc AP CS Committee (2000) emphasises object-orientation as a primary
need, noting that courses should place an emphasis on higher-level abstraction, OO
design, encapsulation, inheritance, and polymorphism. Kölling et al. (1995) are quite
detailed in their specification of requirements that a first year teaching language must
meet, stating that the language should exhibit ‘pure’ object-orientation, supporting the
basic concepts of Object-Oriented Programming (OOP) such as information hiding,
inheritance, type parameterisation and dynamic dispatch in a consistent and easily
understood manner. Stephenson and West (1998) note that many instructors argue that
the first language must be a true OO programming language with support for inheritance,
polymorphism, encapsulation, etc. Riehle’s (2003) study focuses on object-oriented
languages and explicitly lists OOP as a criterion. Several others also incorporate support
for the OO paradigm as an essential factor in language selection, including Watt (2000),
de Raadt et al. (2002; 2003), Stephenson (2000), Howland (1997), Murtagh and Hamilton
(1998), Wang (2001), Paprzycki (2002), and Voegele (2004).

3.17 Debugging facilities

Whilst this criterion is considered part of the IDE, when assessing a programming
language one should evaluate the debugging facilities that accompany the language, i.e.,
the existence of adequate diagnostic aids (Tharp, 1982). The Ad Hoc AP CS Committee
(2000) report states that programming environments should contain extensive tools for
tracing and debugging. The error diagnostics should be clear and meaningful (McIver and
Conway, 1996), and the language should be robust as well as graceful in failure
(Conway, 1993).

 132 K.R. Parker, T.A. Ottaway and J.T. Chao

3.18 Support of web development

One criterion that may not be applicable to every curriculum but critical in others is the
level of web development support that a particular language provides. This is not limited
to scripting languages, as discussed in a previous section, because some languages like
ASP.Net provide a high level of support for web development but are at the same time
considered full featured. Many programmes consider it essential that today’s students
have the skills to develop web-based applications. Wang (2001) notes that future IS
and CS professionals must acquire the skills to develop computer applications in the
internet environment. Fortunately, web application development has evolved to the use of
high-level development tools that focus on the integration of varying components
(Courte, 2004). Further, there are many IDEs and programmes designed to generate
useful web pages.

Martin (2003) compares the features of two web development languages, PHP and
Perl. Haga and Fustos (2002) list several skills needed by a web developer, including
writing server-side and client-side application programmes, web page design and
development, visual design of web pages with graphical and multimedia applications,
database integration, site configuration, management, maintenance, and writing and
editing for the web. The skills most requested in their analysis of position announcements
are server-side scripting (70%), programming languages (68%), database (55%), markup
languages (51%), and client-side scripting (46%).

3.19 Coding safety

This criterion can be used to assess two important factors. The first considers whether the
language offers features like strong type checking and array bounds checking, whilst
avoiding features like variants and pointers in unsafe mode. Kölling et al. (1995,p.174)
note that a language “should avoid concepts that are likely to result in erroneous
programmes. In particular it should have a safe, statically checked (as far as possible)
type system, no explicit pointers and no undetectable uninitialised variables”. They
further state that a language should provide support for correctness assurance, such as
assertions and pre and post conditions. The Ad Hoc AP CS Committee (2000) report cites
a need for safety in a language and environment. Several other studies, including Watt
(2000), Milbrandt (1993), Murtagh and Hamilton (1998), Fergusson (2003), and Riehle
(2003) also mention this as a criterion in language selection.

The second factor, which is closely related to the first, is the inclusion of
security-related features like Java’s sandbox, which is intended to limit the memory
addresses that a Java programme can access. Another example, cited by Voegele (2004),
points out that Java applets are considered untrusted, and thus are limited in the actions
they can perform when executed from a user’s browser. The Princeton Secure Internet
Programming Team (1998) details the requirements for a secure system, including type
safety, modular programming, and security policies.

3.20 Advanced features for subsequent programming courses

If multiple programming courses are included in a computing curriculum, whether or not
a programming language offers adequate advanced features to support an advanced
programming course may be an issue. Whilst some programmes prefer to teach multiple

 Criteria for the selection of a programming language 133

languages in their curriculum, other programmes prefer to introduce basic programming
language features in an introductory course and defer advanced features of the language,
like multithreading, to a subsequent course. Lee and Stroud (1996) include whether a
language provides a basis for subsequent courses that require use of a programming
language, e.g., compiler construction, operating systems, and concurrent programming. In
either case, introductory programming courses cannot be considered in isolation from the
remainder of the courses required in a curriculum (de Raadt et al., 2003).

3.21 Availability of support

This criterion refers to the availability of support staff, including computer lab
staff and/or network administrators, to support the teaching and administration of a
language. Both Tolmach (1999) and Watt (2000) list availability of trained personnel
among their selection criteria. The evaluators must consider the likelihood that their
language questions will be answered (Cunningham, 2004), and should also take into
account the availability of support through forums or listservs on the internet, as well as
vendor support (Tharp, 1982). The evaluators may want to consider the availability of
other resources like teachers’ guides, example programmes, student workbooks, and
programming assignments. Both Collins (2002) and Stephenson (2000) include the
availability of instructional and technology resources.

3.22 Qualified instructors and staff

This refers to the training required for instructors and support staff as well as the time
needed to learn a language or its IDE. It also takes into account the availability of
qualified instructors to teach a particular language. Emigh (2001,p.2) points out that
adopting a new language requires a willingness on the part of the university to invest in
the education of its educators because instructors:

“Must continuously enrich their qualifications, implement new training
methods and techniques supplemented with practical methods and techniques
supplemented with practical experience; while teaching a new language that is
as new to them as it is to their class.”

Lee and Phillips (2002) include training as one of the overheads associated with language
adoption, as do Tolmach (1999) and Wile (2002). Stephenson (2000) reflects on a
need for continuous training to aid instructors in keeping up with constantly changing
technology. Lawlis (1997) says that there is no substitute for good education and training,
so the availability of language-related education and/or training courses must be a part of
language selection.

3.23 Anticipated programming experience level for incoming students

The final criterion is the anticipated programming experience level for incoming
students. This is important because students’ previous experience and training skews their
understanding of new programming paradigms and languages (Traxler, 1994). If students
coming into a programme consistently exhibit the same traits such as previous exposure
to Java, then it may play a role in language selection. Figures released by the College
Board in 2004 indicate that 20% of college-bound students had taken at least one

 134 K.R. Parker, T.A. Ottaway and J.T. Chao

computer programming course in high school (CollegeBoard.com, 2004). Lee and
Phillips (2002) and Kölling et al. (1995) discuss the increase in student experience levels.
The proportion of students with programming experience has increased significantly over
time although not sufficiently to require prior experience as a prerequisite for the course
(Lee and Stroud, 1996). Still, if a programme consistently sees students with uniform
programming experience, it may be able to adjust its requirements and its programming
language selection accordingly.

4 Practical aspects

Although language selection is highly subjective, a thorough list of criteria makes an
objective selection process possible. However, the process may still vary drastically due
to the differences in culture, strategy, or even politics at each institution. The following
steps provide a systematic approach in a general selection process:

1 Compile a list of criteria

The criteria proposed by this study can be adapted to fit the needs of most
departments or programmes.

2 Weight each of the criteria

Ask each evaluator to weight, specific to the department’s needs, the value of
importance for each criterion. For example, the weight may range from zero (do not
care) to ten (extremely important). If there are multiple evaluators, either a consensus
can be reached or the weights assigned by each evaluator can
be averaged.

3 Determine a list of candidate languages

The list should comprise of languages nominated by the faculty rather than a
complete list of available languages. Having sub-lists may be desirable so that a
subset of candidate languages can be compared at one time to narrow down the
choices, and comparing several similar languages may also
be desirable.

4 Rate the language

Each candidate language should be assigned a rating for each criterion. The score
may range from zero (extremely low) to ten (extremely high). Again, with more than
one evaluator, a consensus should be reached or average scores could
be calculated.

5 Calculate weighted score

For each candidate language, a weighted score can be calculated by adding together
the language score multiplied by the weight assigned to each criterion. The
language with the highest weighted score is the optimal choice based on the
evaluators’ assessments.

 Criteria for the selection of a programming language 135

The process is fairly mechanical and can be easily adapted to fit the needs of individual
departments. It may be better to begin the selection process with a brief introduction to
the procedure. A language selection committee may be formed to evaluate and adapt the
selection criteria and to assign a weight to each criterion for the department.

Not every faculty member in the department may have expertise in or even familiarity
with all the languages to be evaluated. One solution is to provide evaluators with
programme code samples for each language to be evaluated, or different groups of
evaluators could assess each subset of language candidates. Another alternative would be
to require each evaluator to state his or her confidence level on each language evaluated.

5 Summary and conclusion

In this paper we have presented the relevant and extant literature on the selection
of a programming language for use in an introductory programming course. We have
developed a comprehensive set of criteria to be used in evaluating a programming
language. Finally, we have proposed a process by which these criteria may be used to
compare programming languages to facilitate the selection of a language.

By constructing an exhaustive set of evaluation criteria and using these criteria in
a structured manner we have set forth a means by which much of the subjectivity in
the selection process may be removed. In addition, the approach presented is extensible.
As new programming paradigms and languages are introduced and old ones fall out
of favour, the criteria and associated process may easily be revised. The objectivity
and extensibility of this approach yield the repeatability sought in the original
research objectives.

In practice, the choice of a programming language for an introductory course is often
a compromise. Economic, political, and pedagogical factors may all be relevant to the
decision-making process. Whilst the importance of each of these factors may depend on
the specific aims and priorities of the institution, educator, or course, educators must be
certain that the factors in the above criteria are not neglected or sacrificed to more highly
visible concerns (McIver and Conway, 1996).

Future research will include refinement of the selection criteria, formalisation of the
selection process, and application of the process in a variety of settings. A large number
of selection criteria have been presented so as to develop the most comprehensive
selection instrument possible. Some of these criteria are likely more relevant than others.
Future research will capture the relative importance of each of these criteria across
different languages, decision makers, and decision-making environments. Formalisation
of the selection mechanism will draw on methods used in multicriteria decision-making.
Finally, the refined selection criteria and process will be applied and evaluated in a
variety of academic settings and the results will be evaluated for use in further refining
both the process and the instrument.

 136 K.R. Parker, T.A. Ottaway and J.T. Chao

References

Ad Hoc AP CS Committee (2000) Round 2: Potential Principles Governing Language Selection
for CS1-CS2, http://www.cs.grinnell.edu/~walker/sigcse-ap/99-00-principles.html

AlGhamdi, J. and Urban, J. (1993) ‘Comparing and assessing programming languages: basis for a
qualitative methodology’, Proceedings of the 1993 ACM/SIGAPP Symposium on Applied
Computing: States of the Art and Practice, Indianapolis, Indiana, pp.222–229.

Allen, R.K., Grant, D.D. and Smith, R. (1996) ‘Using Ada as the first programming language: a
retrospective’, Proceedings of Software Engineering: Education and Practice, Dunedin, New
Zealand, pp.234–241.

Bishop-Clark, C. and Donohue, C. (1999) ‘Comparing changes in attitude in three different
introductory computing courses’, Journal of Educational Technology Systems, Vol. 27, No. 4,
pp.305–317.

Bowman, H. (1994) ‘A perspective on language wars’, 2nd All-Ireland Conference on the Teaching
of Computing, Dublin, Ireland, http://www.ulst.ac.uk/cticomp/papers/ bowman.html

CollegeBoard.com (2004) ‘2004 college-bound seniors: a profile of SAT test takers’, College
Entrance Examination Board, Online, http://www.collegeboard.com/prod_downloads/about/
news_info/cbsenior/yr2004/2004_CBSNR_total_group.pdf

Collins, D. (2002) ‘Java second. The suitability of Java as a first programming language’, The Sixth
Java and the Internet in the Computing Curriculum Conference Proceedings, London, UK,
http://www.ics.ltsn.ac.uk/pub/jicc6/collins.doc

Conway, D. (1993) ‘Criteria and considerations in the selection of a first programming language’,
Technical Report 93/192, Department of Computer Science, Monash University.

Courte, J.E. (2004) ‘The difficulties of incorporating web development into a university
curriculum’, Paper Presented at the New Society of the WWW Conference, Rose-Hulman
Institute of Technology, Terre Haute, Indiana, USA, 30 September–2 October,
http://www10.cs.rose-hulman.edu/Papers/Courte.pdf

Cunningham, W. (2004) ‘Language comparison framework’, Portland Pattern Repository,
29 November, http://c2.com/cgi/wiki?LanguageComparisonFramework

Eisenstadt, M. and Lewis, M.W. (1992) ‘Errors in an interactive programming environment: causes
and cures’, in M. Eisenstadt, M.T. Keane, and T. Rajan (Eds.) Novice Programming
Environments: Explorations in Human-Computer Interaction and Artificial Intelligence,
Hillsdale, NJ: Lawrence Erlbaum Associates, http://citeseer.ist.psu.edu/cache/papers/cs/3586
/http:zSzzSzkmi.open.ac. ukzSzmarczSzpaperszSzBookCh5.pdf/errors-in-an-interactive.pdf

Emigh, K.L. (2001) ‘The impact of new programming languages on university curriculum’,
Proceedings of ISECON 2001, Vol. 18, Cincinnati, Ohio, http://isedj.org/isecon/2001/16c/
ISECON.2001.Emigh.pdf

Esendal, H.T. (1994) ‘The selection of first programming language’, 2nd All-Ireland Conference on
the Teaching of Computing, Dublin, Ireland, http://www.ulst.ac.uk/cticomp/esendal.html

Fergusson, K. (2003) ‘Anti compiler: an educational tool for first year programming’, Honors
Thesis, Department of Computer Science, Monash University, http://www.nifwlseirff.net
/honours/litreview/final/lit-review.pdf

Haga, W.A. and Fustos, J.T. (2002) ‘Weaving a web development curriculum’, Proceedings
of Informing Science and IT Education Conference, Cork, Ireland, pp.629–643,
http://proceedings.informingscience.org/IS2002Proceedings/papers/ Haga155Weavi.pdf

Howatt, J.W. (1995) ‘A project-based approach to programming language evaluation’, ACM
SIGPLAN Notices, Vol. 30, No. 7, pp.37–40, http://academic.luther.edu/~howaja01/v/lang.pdf

Howland, J.E. (1997) ‘It’s all in the language: yet another look at the choice of programming
language for teaching computer science’, Journal of Computing in Small Colleges, Vol. 12,
No. 4, pp.58–74, http://www.cs.trinity.edu/~jhowland/ccsc97/ccsc97/

Jensen, C. (2004) ‘Choosing a language for .NET development’, Borland Developer Network,
http://bdn.borland.com/article/0,1410,31849,00.html

 Criteria for the selection of a programming language 137

King, K.N. (1992) ‘The evolution of the programming languages course’, Proceedings of the
Twenty-Third SIGCSE Technical Symposium on Computer Science Education, Kansas City,
Missouri, pp.213–219.

Kölling, M., Koch, B. and Rosenberg, J. (1995) ‘Requirements for a first year object oriented
teaching language’, Proceedings of the Twenty-Sixth SIGCSE Technical Symposium on
Computer Science Education, Nashville, Tennessee, pp.173–177.

Lawlis, P.K. (1997) Guidelines for Choosing a Computer Language: Support for the Visionary
Organization, 2nd edition, Ada Information Clearinghouse, http://archive.adaic.com/docs
/reports/lawlis/content.htm

Lee, P.A. and Phillips, C. (2002) ‘An assessment of c++ as an introductory teaching language’,
Technical Report CS-TR: 777, Department of Computing Science, University of Newcastle,
http://www.cs.ncl.ac.uk/research/pubs/trs/papers/777.pdf

Lee, P.A. and Stroud, R.J. (1996) ‘C++ as an introductory programming language’, in
M. Woodman (Ed.) Programming Language Choice: Practice and Experience, London:
International Thomson Computer Press, pp. 63–82, http://www.cs.ncl.ac.uk/old/publications
/books/apprentice/InstructorsManual/C++_Choice.html

Martin, M. (2003) ‘PHP: putting perl in a jam? The battle for web programming’, Computer Bits,
Vol. 13, No. 4, http://www.mindbridge.com/news/PerlinaJam.htm

McAllister, N. (2004) ‘What do developers want?’, InfoWorld, http://www.infoworld.com
/article/04/09/24/39FErrdev_1.html

McIver, L. (2000) ‘The effect of programming language on error rates of novice programmers’,
Proceedings of the Twelfth Annual Meeting of the Psychology of Programming Interest
Group, Corigliano Calabro, Italy, pp.181–192, http://www.ppig.org/papers/12th-mciver.pdf

McIver, L. (2002) ‘Evaluating languages and environments for novice programmers’, Proceedings
of the Fourteenth Annual Meeting of the Psychology of Programming Interest Group, London,
UK, pp.100–110, http://www.ppig.org/papers/14th-mciver.pdf

McIver, L. and Conway, D.M. (1996) ‘Seven deadly sins of introductory programming language
design’, Proceedings of Software Engineering: Education and Practice (SE:E&P'96),
Dunedin, NZ, pp.309–316.

Milbrandt, G. (1993) ‘Using problem solving to teach a programming language in computer
studies’, Journal of Computer Science Education, Vol. 8, No. 2, pp.14–19.

Murtagh, J.L. and Hamilton, J.A. (1998) ‘A comparison of Ada and Pascal in an introductory
computer science course’, Proceedings of the Annual ACM SIGAda International Conference
on Ada, Washington, DC, pp.75–80.

MVI Solutions (2004) Computer Programming, http://www.mediavue.net/programming
/programLanguage/computer_programming.html

Paprzycki, M. (2002) Programming Languages, http://www.cs.okstate.edu/~marcin/mp/teach
/spring01/408/csc408.html

Popyack, J.L. and Herrmann, N. (1993) ‘Mail merge as a first programming language’,
Proceedings of the 24th SIGCSE Technical Symposium on Computer Science Education,
Indianapolis, Indiana, pp.136–140.

Prechelt, L. (2000) ‘An empirical comparison of C, C++, Java, Perl, Python, Rexx and Tcl’,
IEEE Computer, Vol. 33, No. 10, http://page.mi.fu-berlin.de/~prechelt/Biblio/jccpprt
_computer2000.pdf

Princeton Secure Internet Programming Team (1998) Programming Language Support for
Security, http://www.cs.princeton.edu/sip/language/

de Raadt, M., Watson, R. and Toleman, M. (2002) ‘Language trends in introductory
programming courses’, Proceedings of Informing Science and IT Education Conference,
Cork, Ireland, pp. 329–337, http://www.proceedings.informingscience.org/IS2002Proceedings
/papers/deRaa136Langu.pdf

 138 K.R. Parker, T.A. Ottaway and J.T. Chao

de Raadt, M., Watson, R. and Toleman, M. (2003) ‘Introductory programming languages at
Australian universities at the beginning of the twenty first century’, Journal of Research and
Practice in Information Technology, Vol. 35, No. 3, pp.163–167.

Reed, D. (2001) ‘Rethinking CS0 with JavaScript’, Proceedings of the 32nd SIGCSE Technical
Symposium on Computer Science Education, Charlotte, North Carolina, pp.100–104.

Riehle, R. (2003) ‘SEPR and programming language selection’, CrossTalk – The Journal
of Defense Software Engineering, Vol. 16, No. 2, pp. 13–17, http://www.stsc.hill.af.mil
/crosstalk/2003/02/Riehle.html

Roberts, E. (2004) ‘Resources to support the use of java in introductory computer science’,
Proceedings of the 35th SIGCSE Technical Symposium on Computer Science Education,
Norfolk, Virginia, pp.233–234.

Sharp, R. (2002) ‘Programming language lifecycles – where’s Java at?’, Software Reality,
http://www.softwarereality.com/programming/language_lifecycles.jsp

Shaw, M., Almes, G.T., Newcomer, J.M., Reid, B.K. and Wulf, W.A. (1981) ‘A comparison of
programming languages for software engineering’, Software – Practice and Experience,
Vol. 11, No. 1, pp.1–52.

Sime, M.E., Green, T.R.G. and Guest, D.J. (1973) ‘Psychological evaluation of two conditional
constructions used in computer languages’, International Journal of Man-Machine Studies,
Vol. 5, No. 1, pp.105–113.

Soloway, E., Bonar, J. and Ehrlich, K. (1989) ‘Cognitive strategies and looping constructs: an
empirical study’, in E. Soloway and J.C. Spohrer (Eds.) Studying the Novice Programmer,
Hillsdale, NJ: Lawrence Erlbaum Associates, pp.853–860.

Stephenson, C. (2000) ‘A report on high school computer science education in five US states’,
http://www.holtsoft.com/chris/HSSurveyArt.pdf

Stephenson, C. and West, T. (1998) ‘Language choice and key concepts in introductory computer
science courses’, Journal of Research on Computing in Education, Vol. 31, No. 1, pp.89–95.

Szafron, D. and Schaeffer, J. (1996) ‘An experiment to measure the usability of parallel
programming systems’, Concurrency: Practice and Experience, Vol. 8, No. 2, pp.147–166.

Tharp, A.L. (1982) ‘Selecting the “right” programming language’, Proceedings of the 13th SIGCSE
Technical Symposium on Computer Science Education, Indianapolis, Indiana, pp.151–155.

Tiobe Software (2005) TIOBE Programming Community Index for April 2005, http://www.tiobe
.com/tpci.htm

Tolmach, A.P. (1999) Evaluating Programming Languages, http://www.cs.pdx.edu/~apt
/cs301_1999/lecture3/

Tomblin, S. (2002) ‘Summary of MIS and programming responses’, ISWorld Listserv, 19 April,
http://www.marshall.edu/ctc/ctc2/MIS_programming_responses.htm

Traxler, J. (1994) ‘Teaching programming languages and paradigms’, 2nd All-Ireland Conference
on the Teaching of Computing, Dublin, Ireland, http://www.ulst.ac.uk/cticomp/traxler.html

Voegele, J. (2004) Programming Language Comparison, http://www.jvoegele.com/software
/langcomp.html

Wallace, C., Martin, P. and Lang, B. (1997) ‘Not whether Java but how Java’, CTI Computing
Monitor, No. 8, http://www.scism.sbu.ac.uk/jfl/conference/uwe.html

Wang, S. (2001) ‘An approach to teaching multiple computer languages’, Journal of Information
Systems Education, Vol. 12, No. 4, pp.201–211.

Warren, P. (2001) ‘Teaching programming using scripting languages’, The Journal of Computing
in Small Colleges, Vol. 17, No. 2, pp.205–216.

Watson, H. (2002) ‘Programming languages summary’, ISWorld Listserv, 28 December
http://www.isworld.org/isworldarchives/Teachingmessagedisplay.asp?message=237

Watt, D.A. (2000) ‘Programming languages – trends in education’, Proceedings of Simposio
Brasileiro de Linguagens de Programacao, Recife, Brazil, http://www.dcs.gla.ac.uk/~daw
/publications/PLTE.ps

 Criteria for the selection of a programming language 139

Wharton, L. (1995) Should C Replace FORTRAN as the Language of Scientific Programming?,
http://www.cs.colorado.edu/~zorn/cs5535/Fall-1995/projects/wharton.ps

Wile, D.S. (2002) ‘Programming languages’, in J.J. Marciniak (Ed.) Encyclopedia of Software
Engineering, 2nd edition, Hoboken, NJ: John Wiley and Sons, pp.1010–1023.

Wilson, G.W. (1997) ‘Tools, languages, and interacting with machines’, Dr. Dobb’s Journal, July,
http://www.ercb.com/ddj/1997/ddj.9707.html

Wolz, U. (1997) ‘Language considerations in a goal-centered approach to CS I and II: Java, C, or
what?’, Journal of Computing in Small Colleges, Vol. 12, No. 5, pp.12–20.

