
Interdisciplinary Journal of Information, Knowledge, and Management Volume 5, 2010

Editor: Eli Cohen

The Reference List Formatter:
An Object-Oriented Development Project

Kevin R. Parker
Idaho State University, Pocatello, Idaho, USA

parkerkr@isu.edu

Abstract
Course projects that are manageable yet still sufficiently comprehensive are often difficult to find
or develop. This can be especially true for a course in object-oriented development, since it in-
volves a wide range of critical topics such as abstraction, encapsulation, inheritance, and poly-
morphism, as well as aggregation and composition, arrays of objects, abstract classes and inter-
faces, and object persistence. It is difficult to find a project that is broad enough to cover all the
topics but at the same time also narrow enough to cover them thoroughly in a one semester
course. One alternative is the use of individual “toy” problems for each concept, but that ap-
proach has been criticized as simplifying problems to the point where they are no longer realistic
and lack useful substance. Another alternative is to use real-world projects in a class, but that ap-
proach can introduce unmanageable complexity or ambiguity into the classroom. This paper
communicates the details of an object-oriented course project that has been developed and refined
to provide a project-based learning component to reinforce course content. The project’s deliver-
ables have been designed to cover every concept that is included in an object-oriented develop-
ment course and provide students with experience with each. Its refinement has taken place in
multiple Java-based and VB.Net-based object-oriented development courses.

Keywords: object-oriented development, semester project, experiential learning, programming
education, project-based learning.

Introduction
Object-Oriented (OO) Programming is a programming language paradigm based on the concept
that procedures and the data on which they operate can be viewed as two parts of the same thing:
an object. An object-oriented programming language is generally characterized by four distin-
guishing features –abstraction, encapsulation, inheritance, and polymorphism.

• abstraction: ignoring irrelevant features, properties, or functions and emphasizing those
that are relevant to the given project.

• encapsulation: the act of grouping
into a single object both the data and
the operations that affect that data.

• inheritance: the process of creating
new classes from existing classes by
absorbing their attributes and behav-
iors and enhancing these with capa-
bilities the new classes require.

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

mailto:Author1Email@address.edu�
mailto:Publisher@InformingScience.org�

The Reference List Formatter

24

• polymorphism: the ability to perform the same operation on different types of objects,
each one implementing that operation in a way appropriate to them.

The above principles are common topics in many object-oriented design classes. Other essential
concepts that should be addressed in an OO design course include aggregation and composition,
arrays of objects, abstract classes and interfaces, and object storage.

It can be difficult to find or formulate a project for an object-oriented development class that cov-
ers all the fundamental concepts. Over the course of several years the author has developed and
refined a course project that provides a project-based learning component to supplement course
materials. It is designed to cover and reinforce every major concept in a typical object-oriented
development course and provide students with experience with each, and has been refined over
the course of multiple semesters in classes using both Java and Visual Basic .NET.

Background
A common problem in software development education is that many programming courses limit
student exercises to “toy” problems, a term that is often used to refer to unrealistically easy and
ultimately useless exercises (Ghezzi, & Mandrioli, 2005). This practice can lead students to un-
derestimate the complexities of real-world programming applications (Ensmenger, 2004). Many
researchers believe that toy problems simplify a real-world problem to such an extent that nearly
all interesting aspects are altered. Moreover, because most toy problems focus on only one or two
techniques, solving them does not entail exploring how different approaches might interact with
one another or how solutions might be integrated. In addition, exclusively solving toy problems
prevents students from realizing how various techniques will scale up to larger problems (Davis,
& Morgenstern, 2004). To avoid this problem it was decided to develop a more realistic and intri-
cate project. Problems that are of a large enough scale and are well chosen can be quite useful and
challenging. There are many successful examples often derived from real-life problems but
cleansed of irrelevant and distracting details (Jazayeri, 2004).

Once the decision was made to use a larger-scale representative project, a review of project-based
learning was undertaken. A literature search shows a longstanding tradition for “doing projects,”
or incorporating “hands-on” activities (Thomas, 2000). A review of literature concerning project-
based learning reveals considerable diversity of defining features. There are similarities between
models referred to as project-based learning and models referred to with other labels, such as “in-
tentional learning” (Scardamalia, & Bereiter, 1991), “design experiments” (Brown, 1992), and
“problem-based learning” (Gallagher, Stepien, & Rosenthal, 1992). Additional similar ap-
proaches include “project-focused,” “experiential education,” and “active learning” (Thomas,
2000). While purists might argue whether the project described here is project-based learning,
experiential education, intentional learning, or something else entirely, it will be referred to herein
as project-based learning, because the approach used is in line with the discussion that follows.

Project-based learning is an instructional method that organizes learning around projects (Tho-
mas, 2000). Projects are generally complex tasks, based on challenging questions or problems,
and involve students in design, problem-solving, decision making, or investigative activities. Fur-
ther, they culminate in realistic results or presentations (Jones, Rasmussen, & Moffitt, 1997;
Thomas, Mergendoller, & Michaelson, 1999). Project-based learning at universities arose in the
1970s in Europe, based on the idea that the best form of professional development is learning by
doing (Von Kotz, & Cooper, 2000). Project-based learning approaches are based on constructivist
theory (Henze & Nejdl, 1997). The focus of constructivism is what actual people in a knowledge
domain and in a real-life context typically do (Bednar, Cunningham, Duffy, & Perry, 1992). The
basic foundations of constructivism include situated cognition and cognitive apprenticeship, both
of which are incorporated into project-based learning. Situated cognition is a form of thinking

Parker

25

that is anchored in real-world contexts, with the learning of content embedded in the use of the
content. In project-based learning, students learn content knowledge, skills, and dispositions in
the process of working through a realistic project modeled on a scenario that might be encoun-
tered in the “real world.” Cognitive apprenticeship is a teaching approach in which the assign-
ment models the processes students are learning, and students are directed toward expert per-
formance (Cavanaugh, 2004).

The nature of project-based learning is developing skills and content by engaging in tasks that
involve the skills and content to be learned and that provide real-world context for learning (War-
lick, 1999). Project-based learning requires students to assume a real-life role and apply the tools
of a knowledge domain in completing a project. Project-based learning provides a context in
which students move toward thinking as a knowledge domain expert might think (Cavanaugh,
2004). The opportunity to apply learning to a real-life situation facilitates the transfer of learning
(Fisher, & Frey, 2007). Project-based learning requires students to deal with complex questions
and undertake projects that involve synthesizing understandings and considering real-world is-
sues.

Because of the complexity and size of the intended project it was decided that the project would
be made up of a series of deliverables, each of which builds on previous deliverables. In this con-
text deliverables are the “measurable results of intermediate activities within the project” (Asso-
ciation of Project Management, 2000). In educational projects a deliverable is a task that is in-
strumental in learning how to apply concepts and methodological approaches related to a particu-
lar task, i.e., an educational objective is reinforced by the corresponding deliverable (Piccinini, &
Scollo, 2006). A single final deliverable, coupled with students’ tendency to procrastinate, might
lead to incomplete or shoddy results. Further, a series of deliverables gives students manageable
“chunks” to process, permits those chunks to be assigned in close conjunction with relevant
course content, and enables students to develop a more realistic system than most toy projects
allow. The fact that each deliverable builds on the previous deliverable can lead to a problem
known as deliverable dependencies, which is defined by Turk and Vaishnavi (2000) as a situation
in which deliverablen cannot be undertaken until deliverablen-1 has been completed. This issue has
been somewhat successfully addressed in the classroom by providing a representative solution for
each deliverable as soon as all students have turned in their assignments. This approach helps to
level the playing field and avoid compounding student grade deductions if they erred on earlier
deliverables. It also helps the student to see good programming practices, like well documented
code, good variable naming practices, etc., so that they learn to develop code with an eye toward
maintainability and modifiability.

Overview of Requirements
The objective of this project is to develop an object-oriented program that generates a formatted
reference list. A reference list appears at the end of most research papers to provide the informa-
tion necessary for a reader to locate and retrieve any source cited in the body of the paper. Most
students enrolled in tertiary institutions have experience writing term papers and should, there-
fore, be familiar with reference lists. A reference list generally includes the author name or
names, the title of the work, the resource type, and publication information in a consistent and
recognizable form. References often include a wide range of resource materials – books, journal
articles, conference proceedings, Internet sources, films, information services, and many others.
Unlike a bibliography, which is often either a comprehensive or in-depth survey of works avail-
able on a particular subject or research area or a list of all materials that have been consulted dur-
ing the course of conducting research for a project or a paper, a reference list usually includes
only those works actually referenced in a paper or manuscript (Oberon Development, 2006).

The Reference List Formatter

26

There is a myriad of styles for reference formatting. Among the most common are (Delaney,
2009):

• APA (American Psychological Association): used in psychology, education, and other
social sciences.

• MLA (Modern Language Association): used in literature, arts, and humanities.

• AMA (American Medical Association): used in medicine, health, and biological sciences.

• Turabian: designed for college students for use with all subjects.

• Chicago: used with all subjects in the “real world” by books, magazines, newspapers, and
other non-scholarly publications.

There are several additional specialized formatting styles like IEEE (Institute of Electrical and
Electronics Engineers), ACS (American Chemical Society), CSE (Council of Science Editors),
SAA (Society of American Archaeology), ASA (American Sociological Association), APS
(American Physical Society), ASABE (American Society of Agricultural and Biological Engi-
neers) , AAA (American Anthropological Association), and others even more specialized and
obscure.

The project focuses on the development of a software application to format a reference list. In its
current form it includes a base class called clsReference, as well as a clsBook and clsJournal that
inherit from clsReference. There is also a clsChapter that inherits from clsBook. All classes im-
plement an abstract interface that provides MLA, APA, and Chicago formatting capabilities. The
project is extensible in that it can easily be expanded (and has been in classroom use) to include
additional reference types as well as additional formatting styles.

The project consists of a series of deliverables, each of which builds on previous deliverables un-
til a complete system has been developed and tested. In this way students gain experience devel-
oping a larger system than most toy projects allow. Project requirements were carefully con-
structed so that each deliverable addresses specific design concepts. The deliverables focus on, in
order, abstraction, encapsulation, arrays of objects, aggregation, abstract interfaces and inheri-
tance, polymorphism, and object persistence. Error handling can be interwoven throughout the
project or included as an additional deliverable.

Table 1 provides a summary of the deliverables, noting the concept that each deliverable is de-
signed to reinforce, and providing an overview of the deliverable.

Deliverable 1 focuses on abstraction. The student will gain experience designing classes. It re-
quires the abstraction of a programmer-defined clsName class to allow the storage and display of
author names in various formats. In addition, it requires the design of a programmer-defined
clsDate class to allow the storage and display of publication dates in different formats.

Deliverable 2 focuses on encapsulation. The student will gain experience encapsulating classes
and instantiating objects from those classes. It requires the creation of a programmer-defined
clsName class to allow the storage and display of author names in various formats. In addition, it
requires development of a programmer-defined clsDate class to allow the storage and display of
publication dates in different formats.

Deliverable 3 provides the student with experience modifying classes, setting up an ArrayList of
objects, and sorting the ArrayList. Specifications require the modification of the clsName class so
that it implements the IComparable interface and includes a CompareTo method. It also requires
instantiating an ArrayList of clsName objects, providing values for the names, and then sorting
the ArrayList of objects in order by last name and first name.

Parker

27

Table 1: Summary of Deliverables

Concept

Reinforced
Brief Overview

Abstraction The student will gain experience designing classes.

Encapsulation The student will gain experience encapsulating classes and instantiating objects
from those classes.

Data Structures
of Objects

Provides the student with experience modifying classes, setting up an ArrayList of
objects, and sorting the ArrayList.

Aggregation Provides students with additional experience with classes and object instantiation, as
well as utilizing aggregation to create classes comprised of existing classes to dem-
onstrate code reuse.

Inheritance and
Interfaces

Reinforces the concept of abstract classes and abstract interfaces and provides stu-
dents with experience implementing inheritance through building new classes that
are based on existing classes.

Polymorphism Students will gain experience manipulating data structures of objects in order to
gain an appreciation of the fact that polymorphism allows objects derived from the
same base class to be manipulated based on their actual type, in spite of the fact that
the specific type may be unknown.

Persistent
Objects

Requires that students learn how to create persistent objects using the binary format-
ter or Simple Object Access Protocol (SOAP) and data files.

Deliverable 4 focuses on the concept of aggregation. It provides students with additional experi-
ence with classes and object instantiation, as well as utilizing aggregation to take advantage of
code reuse. Students are required to develop a new class called clsReference that includes as in-
stance variables an ArrayList of clsNames to represent authors and a clsDate object reference to
represent the publication date. Upon completion of this deliverable the student will have devel-
oped a structure capable of handling information shared by most publication types, including au-
thors, title, and publication date.

Deliverable 5a reinforces the concept of abstract classes and abstract interfaces. The reference
class developed in the previous deliverable must be modified so that it can serve as an abstract
class. The next step is to develop an abstract interface that will be implemented by the reference
class as well as all classes derived from it. The interface will include method signatures for for-
matMLA, formatAPA, and formatChicago, the subset of reference style approaches selected for
this project. The reference class should be modified to implement the new abstract interface.

Deliverable 5b focuses on the concept of inheritance. It requires the development of derived
classes from the reference class. A book class and a journal class will be derived directly from the
reference class, and a text chapter class will be derived from the book class. Additional classes,
such as a proceedings class, can easily be added to extend the scope of the project. There is a sin-
gle deliverable for Deliverables 5a and 5b.

The focus of Deliverable 6 is on polymorphism. As the user enters individual references, such as
book, chapter, and journal details, they will be stored in an ArrayList of generic references. They
will then be manipulated based on their actual type to demonstrate the concept of polymorphism,
which requires both method overriding and dynamic binding. Students will see that while they

The Reference List Formatter

28

may not know the specific type of an individual item in an ArrayList, the appropriate methods
each object will be invoked correctly. Type casting will also be demonstrated by this exercise.
The program should also implement a preview feature using a control like a RichTextBox or
JTextPane if one is available in their development environment.

Deliverable 7 requires that students learn how to create persistent objects using the binary format-
ter or Simple Object Access Protocol (SOAP) and data files. Students will write their ArrayList of
references to a binary or SOAP file and later retrieve it into another ArrayList and manipulate it
to demonstrate that no object properties were lost in the transition. The ArrayList of objects will
then be read from the file and the program will loop through the ArrayList applying the selected
format and write the formatted output to a Microsoft Word file. At the instructor’s discretion the
student can also be directed to implement a user-friendly interface with menus, etc., to improve
usability of the system.

Detailed Requirements
This section describes the detailed specifications for each deliverable. Details are given using
terminology specific to VB.Net, since that was the language used in the latest classroom trial of
the project. It is also written as a set of instructions for the student so that it can be used by in-
structors with minimal modifications. Instructor resources like sample code and grading rubrics
will be addressed in a later section.

Deliverable 1: Abstraction
• Objectives: Gain experience using abstraction to design classes by assessing possible at-

tributes and behaviors and capturing those that are relevant to the project at hand.

• Description: This deliverable is intended to provide students with experience designing
classes (abstraction).

Recall that abstraction requires the designer to ignore irrelevant features, properties, or functions
and emphasize only those that are relevant to the given project.

There are several different ways to format references in a research paper. Probably the most
common ones are the APA style, the MLA style, and the Chicago style. You can find examples of
each format in the Reference Styles help sheet in Appendix A.

This deliverable is the first component that you will develop in the process of designing and im-
plementing a reference formatting system. Notice that every reference, regardless of the style,
includes the author's name (or authors' names) and a publication date. As an exercise in abstrac-
tion you will consider each of those independently.

Part I: clsName
Begin by considering a name and asking what possible attributes can be associated with a name.
Most individuals come up attributes like first name, last name, and middle name or middle initial.
However, some names like J.R.R.Tolkien have two middle initials. There are also two word last
names (e.g., St. James) as well as hyphenated last names (e.g., Smith-Cross). There is often a suf-
fix, such as Ph.D., M.D., Sr., Jr., III, etc. And many names have a prefix like Mr., Mrs., Ms., and
Dr., although it could be argued that they are not really part of the name. More on suffixes can be
found in Wikipedia (“Suffix,” 2009).

Those are just the types of names that students in English-speaking countries are most familiar
with. When designing software one must take into account international usage that can impact
design. For example, the list of possible suffixes must be expanded to include suffixes like Don,

http://cobhomepages.cob.isu.edu/parkerkr/courses/CIS320/programming/referenceStyle.htm�

Parker

29

Doña, Sr., and Sra. Further, a website that discusses name variations points out that “the rest of
the world” doesn't necessarily conform to the “first name, middle initial, and last name” model
(Frank, n.d). The reason is that the major components of people’s names include the given names,
which are the names given to children by their parents, and family names, or surnames, which are
the names passed down from one family generation to another in most countries.

Here are several cases that should be considered:

Case 1: Ann Elizabeth Brown has two given names and one family name. If she calls herself Ann,
then she has a first name, can use a middle initial, and has no problem with the standard
format.

Case 2: Supposing, however, that she has been called Beth since birth, and goes by A. Beth
Brown. In that case her name doesn’t conform to the “first name, middle initial, and last
name” model. Neither will that of J. Edgar Hoover, a former FBI director, and many oth-
ers.

Case 3: If Beth Brown marries someone named Tom Adams she might then call herself Beth Ad-
ams, or perhaps Beth Brown, or even Beth Brown Adams. Although Ann is still her first
given name she seldom uses it. What is now her middle initial?

Case 4: Romelia María Hernández Flores is from Mexico. Her names (nombres) are Romelia
María (and she always uses both these names), her primer apellido (father's family name)
is Hernández and her segundo apellido (mother's family name) is Flores. You would find
her in a Mexican phone book under “Hernández Flores, Romelia María.” She calls her-
self Romelia María Hernández.

Case 5: Romelia María’s boyfriend is Jorge Eduardo Romero de León. He has two given-names
(and uses the second of these), and two family-names (Romero and de León). You find
him in a Mexican telephone book under “Romero de León, Eduardo.” He calls himself
Eduardo Romero.

Case 6: If Romelia María marries Eduardo, Romelia María Hernández Flores becomes Romelia
María Hernández de Romero.

Case 7: Li Xiao Ping is from China. In China, Japan, Vietnam, Hungary, and some other coun-
tries, the family-name (Li) comes first. The two components (Xiao Ping) of his given
name are used together as one name such that they could almost be written Xiaoping.
You find him in a Chinese phone book as Li Xiao Ping (written in 3 Chinese characters
with no comma).

Designing a name class suddenly seems much more complex. However, when engaging in object-
oriented design you begin by considering all possible attributes and then narrow those attributes
down to those that are relevant to the problem at hand. That simplifies the situation in this case.

The problem at hand is a reference formatter. Refer to the Reference Styles help sheet in Appen-
dix A to see what information is required to represent an author's name. If it does not contain
enough examples to help you get a feel for what is required, perform an Internet search for the
terms “reference styles,” “MLA,” “APA,” or “Chicago.”

Abstraction is not limited to attributes. Once you complete the abstraction process with regard to
attributes, you next need to address functional abstraction, a process in which you determine
which functionality is important in much the same way as you determine which data items are
important.

Functional abstraction takes into account such things as accessor methods (those used to return
the values of instance variables), mutator methods (those used to change the values of instance

http://cobhomepages.cob.isu.edu/parkerkr/courses/CIS320/programming/referenceStyle.htm�

The Reference List Formatter

30

variables), constructors (those methods used to initialize the instance variables), and any neces-
sary data validation or data conversion methods.

You should consider the necessary constructors. There will always be a last name, but first name
may be a name or an initial, or may not even exist. Further, you can't always find an author’s first
name on a publication if they only use an initial. J.R.R. Tolkien is again a good example. Did So-
crates have a first name? And will there always be a middle name or initial?

Consider mutator methods. Are they needed for individual attributes or do you want to provide
values for all attributes, or a subset of them, at once? There are instances in which you want to
create “read-only” instance variables in which case no mutator methods are provided, only acces-
sor methods.

Shifting our focus to accessor methods, the different formatting styles often use variations on how
the author’s name is displayed, and this affects the components that you must consider. Even if
you limited your scope to just first name, middle initial, and last name you have several combina-
tions. The fact that middle initial is either omitted or must follow the first name if it is included
narrows the possibilities. The fact that a first name may be the complete first name or a first ini-
tial broadens the possibilities.

Permutations with middle initial:

• Anthony T. Jones

• Jones, Anthony T.

• A.T. Jones

• Jones, A.T.

Permutations without middle initial:

• Anthony Jones

• Jones, Anthony

• A. Jones

• Jones, A.

So there are eight combinations even if you ignore the suffix, two word last names, hyphenated
last names, etc. Again, review the Reference Styles help sheet in Appendix A to see what formats
are required to represent an author's name.

Now consider validation methods. How do you validate the data stored in a name? You can test
the value character by character to be sure it is not blank, not numeric, or non alphabetic. Is that
adequate? Sure, for most American names. However, apostrophes, hyphens, or spaces in names
must be accounted for as well (Odriscoll, 2008). Therefore you should be sure that each character
is uppercase (Unicode values 65-90), lowercase (97-122), or a space (32) for Dutch names like
van Kemp, apostrophe (39) for Irish, French, Italian, and African names like O'Connor, period for
names like St. James, or hyphen (45) for Arab names like Al-Hussein or hyphenated married
names like Joyner-Kersee. Validating the middle initial is considerably easier, but still must be
done. Note that only a single (valid) character or no middle initial at all is acceptable.

You should also provide utility methods like getInitial that will extract the first letter from a first
or middle name.

A simple Unified Modeling Language (UML) class diagram depicts classes as boxes with three
sections, the top one indicates the name of the class, the middle one lists the attributes of the

http://cobhomepages.cob.isu.edu/parkerkr/courses/CIS320/programming/referenceStyle.htm�

Parker

31

class, and the third one lists the methods. For example, a class diagram of clsFlight (from an air-
line reservation system) is shown below.

clsFlight

flight#
flightDate
flightTime
flightOrigin
flightDestination
aircraftType

reserveSeat
cancelSeat
checkAvailCoach
checkAvailFirstClass

Part II: clsDate
Now consider how a reference formatting system stores and displays a date. Notice that the dif-
ferent formatting styles often use variations in how the publication or conference date is dis-
played. All references include at least a year of publication, while some, like proceedings, include
a complete beginning date and a complete ending date, like October 31, 2008 - November 2, 2008
or November 7-10, 2008.

This deliverable will require you to create a programmer-defined clsDate class that will allow the
storage and display of publication dates in different formats. Most OO programming languages
provide a built-in date class. Can it be used to represent a publication date so that we don't have to
develop our own? In most cases the answer is no. As noted above, some publications include only
a year, some include only a month and year, and some include an entire date. Therefore, your
class must allow the storage of a 0 value for day for instances in which only the month and year
of publication are known, and should also allow the user to specify both a 0 or null day and a 0 or
null month for instances in which only the year of publication is known. Most built-in date
classes require non-zero values for month, day, and year so a user-defined date class is required.

Go through the same process that you followed for name to decide on the attributes and function-
ality needed for your date class. Discuss with your professor whether you want to store your date
in month, day, and year format, with attributes for each, or in Julian date format with a single at-
tribute for all. You can read more about Julian dates in Wikipedia (“Julian day,” 2009). As with
names, you should consider international usage. There are many different formats that can be
used to display dates (Frank, n.d.).

You should provide at least three constructors: (1) one that accepts actual parameters for month,
day, and year, (2) one that accepts parameters for month and year, and (3) one that accepts an ac-
tual parameter for year.

Whether you use Julian dates or individual attributes for month, day, and year you are going to
have to validate your month, day, and year. That will require validateMonth, validateDay, and
validateYear methods. It will also require a function to determine if the year is a leap year, since
that knowledge is required to validate the day. Recall that most years that are evenly divided by 4
are leap years. However, years that are evenly divided by 100 but not evenly divided by 400 are
not leap years. Thus 1996 is a leap year, 1900 is not, and 2000 is.

http://en.wikipedia.org/wiki/Julian_day�

The Reference List Formatter

32

As with clsName, design a UML class diagram to model your clsDate.

Keep in mind that although abstraction requires that you ignore irrelevant details, you must also
take into account future expansion of the project. How might this affect your design decisions in
this case?

Submissions for this deliverable
• UML class diagram for clsName

• UML class diagram for clsDate

Deliverable 2: Encapsulation
• Objectives: Gain experience with encapsulation and instantiation by setting up classes

and instantiating objects.

• Description: This deliverable is intended to provide students with experience “bundling”
data and the processes that operate on that data into a single package. It will also provide
experience using overloaded constructors, accessor methods, mutator methods, and utility
methods.

Recall that encapsulation is basically a design issue that deals with how functionality is compart-
mentalized within a system. In object-oriented programming, encapsulation is the inclusion with-
in a program object of all the resources needed for the object to function, i.e., related data and the
methods that manipulate those data.

This deliverable will require you to create a programmer-defined clsName class to allow the stor-
age and display of author names in various formats. In addition, it will require you to create a
programmer-defined clsDate class that will allow the storage and display of publication dates in
different formats. These classes were designed in the previous deliverable, but not implemented.

Part 1: clsName
The clsName class should include instance variables for (at least) first name, middle initial, and
last name. (If your Deliverable 1 revealed additional variables like suffix then be sure to include
them.) Take care to not include extraneous instance variables.

You should provide the necessary constructors (there will always be last name, but will there al-
ways be a first name and/or an initial?)

You must provide mutator methods. At a minimum, you should include the following:

Public Sub setFirstName (ByVal first As String)
Public Sub setLastname (ByVal last As String)
Public Sub setMI (ByVal mi As String)
Public Sub setName (ByVal last As String, ByVal first As String, ByVal mi As String)

Recall that mutator methods can perform three tasks:

(1) provide values for instance variables

(2) perform data validation, such as range checking

(3) translate between the form of the data used in the interface and the form used in the
implementation

Parker

33

In this particular class the third task is not necessary, but you must remember to validate the first
name, middle initial, and last name. Remember that it is not uncommon to know only the author’s
first initial and possibly no middle initial.

You should also provide accessor methods to getFirstInitial and method(s) to format names like
Jones, Anthony T. and Jones, A.T. You may want to write a single method that reads the value of
a parameter that you pass to determine which format to use, but it is not required that it be a sin-
gle method.

Here are some possible combinations that you should provide accessor methods for:

A. Jones
A.T. Jones
Anthony Jones
Anthony T. Jones
Jones, A.
Jones, A.T.
Jones, Anthony
Jones, Anthony T.

In other words, include

Public Function getFiLast () As String
Public Function getFiMiLast () As String
Public Function getFirstLast () As String
Public Function getFirstMiLast () As String
Public Function getLastFi () As String
Public Function getLastFiMi () As String
Public Function getLastFirst () As String
Public Function getLastFirstMi () As String

To make your class more generic you may opt to include accessor methods called getFirst, get-
Last, and getMI.

Recall that not all methods need to be declared as Public. Those methods that are provided simply
to support the Public methods but that do not need to be part of the interface are declared Private
and are referred to as utility methods. Include these utility methods:

Private Function getFirstInitial () As String
Private Function getMiddleInitial () As String
Private Function validName (ByVal name As String) As Boolean
Private Function validInitial (ByVal initial As String) As Boolean

Part 2: clsDate
The clsDate class should store dates using month, day, and year. A new date class is necessary
because the built-in data types for date do not allow zero values for month and day, but often that
information is not available for a publication; hence the need for a specialized class. You can use
the clsDate class provided in Appendix B as a basis.

The clsDate class should include instance variables for month, day, and year. Take care to include
no extraneous instance variables.

You should provide at least three constructors: (1) one that accepts actual parameters for month,
day, and year, (2) one that accepts parameters for month and year, and (3) one that accepts an ac-
tual parameter for year. The most efficient approach is to call the setDate method from each con-

http://cobhomepages.cob.isu.edu/parkerkr/Protected/CIS320/notes/06_OO_example_generic.htm�

The Reference List Formatter

34

structor and allow it to handle the 0 parameters. Why should a constructor call a mutator method?
Recall again the tasks normally performed by mutator methods.

You must provide mutator methods. At a minimum, you should include the following:

Public Sub setDay (ByVal dd As Integer)
Public Sub setMonth (ByVal mm As Integer)
Public Sub setYear (ByVal yyyy As Integer)
Public Sub setDate (ByVal yyyy As Integer)
Public Sub setDate (ByVal mm As Integer, ByVal yyyy As Integer)
Public Sub setDate (ByVal mm As Integer, ByVal dd As Integer, ByVal yyyy As Integer)

Both setMonth and setDay should check to see if the argument received is 0. If it is, then the ap-
propriate instance variable should be set to 0. Otherwise the argument should be validated and if
it is acceptable the instance variable is set. Do not forget to take leap years into account. The
setYear method simply needs to validate the year. The setDate method with three arguments sets
the date values by first checking for and allowing a 0 month, and if it is non-zero it validates the
month. It then checks for and allows a 0 day, and if it is non-zero it validates the day. If no month
is provided but a day is provided, that is an error and the day should be set to 0. The approach
used by the remaining overloaded setDate methods can be inferred from the above description.

You should also provide a variety of accessor methods. One accessor method, referred to below
as dateToString, should return a string consisting of year, or a string consisting of month and
year, or a string consisting of month, day, and year depending on the value of a parameter that is
passed in. Note that this is a single routine, not three different methods. That requirement is in-
cluded to test your programming ingenuity. It must NOT ever display a 0 month or 0 day, even if
its parameter specifies it. You may also want to include getDay, getMonth, and getYear for com-
pleteness.

Public Function getDay () As Integer
Public Function getMonth () As Integer
Public Function getYear () As Integer
Public Function dateToString (ByVal MDY As String) As String

Include these utility methods:

Private Function validateMonth (ByVal mm As Integer) As Integer
Private Function validateDay (ByVal mm As Integer, ByVal dd As Integer,
 ByVal yyyy As Integer) As Integer
Private Function validateYear (ByVal yyyy As Integer) As Integer
Private Function isLeapYear (ByVal yyyy As Integer) As Boolean

Submissions for this deliverable
Provide a main (form) method that instantiates a clsName object and tests each of the possible
features. Also instantiate a clsDate object and test each of the possible features. The date on the
form should default to the current date. Your clsName and clsDate should be stored in individual
files. See Appendix C Figure 1 for a sample screen shot of the interface.

Deliverable 3: ArrayLists of Objects
• Objectives: Gain experience modifying classes, setting up ArrayLists of objects, and sort-

ing those ArrayLists.

Parker

35

• Description: This deliverable is intended to provide you with additional experience with
classes and object instantiation, as well as creating ArrayLists of objects and manipulat-
ing them.

It is common for a publication to have multiple authors. In Deliverable 2 you created a clsName
class to store a single name, but in order to enable the storage of multiple author names a collec-
tion of clsName objects is needed. In order to accomplish this you will set up an ArrayList of
clsName objects.

Modify the clsName class so that it includes the Imports System.Collections statement and im-
plements the IComparable interface. The IComparable interface provides an abstract method by
which objects can be compared so that sorting is possible. If the clsName class implements
IComparable it must also be modified to include a CompareTo method. Recall that the Com-
pareTo method must define a rule for comparing an instance of the clsName class to other objects
to specify how sorting should be performed. Your test program should instantiate several
clsName objects, assign values to the first and last name of each, call the ArrayList.Sort routine to
sort the ArrayList of objects in order by last name and first name, and then print the sorted results
in a text box.

Submissions for this deliverable

Provide a main form that includes an “Add Name to Author List” button and a “Sort Names” but-
ton. There should also be a “Clear Fields” button that clears all input and output fields. See Ap-
pendix C Figure 2 for a sample screen shot of the interface.

Note

Your professor will indicate whether you should use an array or an ArrayList for this deliverable
and throughout the rest of this project, depending on the concept that he or she wants to empha-
size. These specifications will refer to the required structure as an ArrayList.

Deliverable 4: Aggregation
• Objectives: Gain experience designing classes using aggregation.

• Description: This deliverable is intended to provide you with additional experience with
classes and object instantiation, as well as utilizing aggregation to take advantage of code
reuse.

Recall that an aggregation among classes exists when a class contains references to other classes.
The features that are common to all references in a reference list, regardless of type, are author
name(s), title, and publication date. A new class called clsReference will be used to capture these
features and will include an ArrayList of clsName objects to represent author names, a String to
represent the title, and a clsDate object to store the publication date. The class clsReference is an
aggregation because the data types of its instance variables include other classes, namely clsName
and clsDate.

This deliverable requires that you develop a new class called clsReference that has the following
instance variables:

 Private author As New ArrayList (of clsName objects)
 Private title As String
 Private pubDate As clsDate

The Reference List Formatter

36

Your clsReference should also have the following methods:

 Public Sub New ()
 Public Sub New (ByVal last As String, ByVal first As String, ByVal mi As String, _
 ByVal newTitle As String, ByVal mMonth As Integer, ByVal mDay As Integer, _
 ByVal mYear As Integer)
 Public Sub setAuthor (ByVal last As String, ByVal first As String, ByVal mi As String)
 Public Sub setTitle (ByVal newTitle As String)
 Public Sub setPubDate (ByVal year As Integer)
 Public Sub setPubDate (ByVal month As Integer, ByVal year As Integer)
 Public Sub setPubDate (ByVal month As Integer, ByVal day As Integer,
 ByVal year As Integer)
 Public Function getAuthorLastFirstMi () As String
 Public Function getAuthorLastFiMi () As String
 Public Function getAuthorLastFiMi_FirstMiLast () As String
 Public Function getAuthorLastFirstMi_FirstMiLast () As String
 Public Function getTitle () As String
 Public Function getTitleLowercase () As String
 Public Function getPubDate (ByVal dateFormat As String) As String
 Protected Function convertToLowerCase (ByVal changeText As String) As String
 Protected Function convertToTitleCase (ByVal changeText As String) As String

The accessor and mutator methods for author must be capable of handling multiple names, i.e., an
ArrayList of names. Refer back to the Reference Styles help sheet in Appendix A for examples.
Make sure you define the methods in the order listed above. See Appendix D for detailed descrip-
tions of each method listed above.

If you have not yet learned about the Protected access modifier associated above with convert-
ToLowerCase and convertToTitleCase, simply use it and wait for your instructor to discuss it
when the topic of inheritance is covered.

Submissions for this deliverable
Appendix C Figures 3 and 4 show sample screen shots of the interface.

The Add Authors button should call the setAuthor method of the clsReference object and clear
the textboxes. Display a message box or status line confirming what you have done.

The Save All Authors button should place the focus in the title textbox. Display a message box or
status line confirming what you have done.

The Save Reference button should call the setTitle method of the clsReference object, the set-
PubDate method of the clsReference object, and then build the output string for the preview out-
put box. Display a message box or status line confirming what you have done.

Deliverable 5: Abstract Classes, Abstract Interfaces, and
Inheritance

• Objectives: Gain experience using abstract classes, abstract interfaces, and inheritance.

• Description: This deliverable is intended to provide you with experience designing ab-
stract classes and interfaces, as well as inheritance.

javascript:win(550, 150, 80, 80, 'tooltips/tooltips/newNo.htm')�
javascript:win(550, 150, 80, 80, 'tooltips/newMulti.htm')�
javascript:win(550, 150, 80, 80, 'tooltips/setAuthor.htm')�
javascript:win(550, 150, 80, 80, 'tooltips/setTitle.htm')�
javascript:win(550, 150, 80, 80, 'tooltips/setPubDate.htm')�
javascript:win(550, 150, 80, 80, 'tooltips/setPubDate2.htm')�
javascript:win(550, 150, 80, 80, 'tooltips/setPubDate3.htm')�
javascript:win(550, 150, 80, 80, 'tooltips/getAuthorLastFirstMi.htm')�
javascript:win(550, 150, 80, 80, 'tooltips/getAuthorLastFiMi.htm')�
javascript:win(550, 150, 80, 80, 'tooltips/getAuthorLastFiMi_FirstMiLast.htm')�
javascript:win(550, 150, 80, 80, 'tooltips/getAuthorLastFirstMi_FirstMiLast.htm')�
javascript:win(550, 150, 80, 80, 'tooltips/getTitle.htm')�
javascript:win(550, 150, 80, 80, 'tooltips/getTitleLowercase.htm')�
javascript:win(550, 150, 80, 80, 'tooltips/getPubDate.htm')�
javascript:win(550, 150, 80, 80, 'tooltips/convertToLowerCase.htm')�
javascript:win(550, 150, 80, 80, 'tooltips/convertToTitleCase.htm')�
http://cobhomepages.cob.isu.edu/parkerkr/courses/CIS320/programming/referenceStyle.htm�

Parker

37

Part I: Abstract classes
Previous deliverables have provided a beginning for the reference formatter system, but there is
much work to be done. You recently created a clsReference class to serve as a base class for more
specific derived classes. As it stands, clsReference is too generic to define real objects; we need
to be more specific before we can think of instantiating actual references like books and journals.
The first part of this deliverable requires you modify clsReference so that it can serve as an ab-
stract class.

Recall that abstract classes are classes that are defined, but for which the programmer never in-
tends to instantiate any objects. These normally serve as superclasses in inheritance situations,
and are referred to as abstract superclasses. The sole purpose of an abstract class is to provide an
appropriate template superclass from which other classes may inherit common interface and/or
implementation details. Abstract classes facilitate reuse because they specify code common to all
their derived classes.

Modify clsReference so that it can serve as an abstract class.

• Insert the keyword MustInherit.
• Include the keywords Protected and MustOverride with the methods if they are neces-

sary.

Part II: Abstract interfaces
An abstract interface is a specification of a set of methods that are to be implemented in the class
that inherits from it. An abstract interface provides common functionality across the classes that
implement it. Abstract interfaces resemble abstract classes, but contain only abstract methods. An
abstract interface contains only method signatures, while the abstract class can contain abstract
methods as well as constants, variables, and concrete methods. If a class claims to implement an
interface, all methods defined by that interface must appear in its source code before the class will
successfully compile. Remember that the purpose of an abstract interface is to provide a common
set of methods, or common interface, to all classes that implement it. In the context of a reference
formatting system you should be able to format any reference, regardless of type, in the MLA,
APA, or Chicago style.

Provide an abstract interface called IFormattableReference that includes the following method
signatures:

• formatMLA

• formatAPA

• formatChicago

Modify clsReference to implement IFormattableReference. The classes that will be derived from
clsReference in the next part of this deliverable will implement the interface.

Part III: Inheritance
Part III of this deliverable requires you to practice using inheritance by deriving classes from the
abstract class clsReference and implementing the IFormattableReference interface. Recall that
inheritance is the process of creating new classes, called derived classes, from existing or base
classes by absorbing their attributes and behaviors and embellishing these with capabilities the
new classes require. Therefore your new derived classes will inherit the instance variables and
methods from clsReference, will implement every method specified in the IFormattableReference

http://cobhomepages.cob.isu.edu/parkerkr/Protected/CIS320/notes/09_abstract classes.htm�
http://cobhomepages.cob.isu.edu/parkerkr/Protected/CIS320/notes/09_interfaces.htm�
http://cobhomepages.cob.isu.edu/parkerkr/Protected/CIS320/notes/09_inheritance.htm�

The Reference List Formatter

38

interface, and will add instance variables and methods specific to whatever type of reference is
being modeled by the derived class.

You will be implementing the inheritance structure shown in the UML class diagram in Figure 1.
The class diagram may not include all instance variables or methods required.

Part III, Step 1: Create a new class called clsBook that is derived from clsReference. It should
add new class members, including the following instance variables:

• publisher

• city

• state

• country

Figure 1: Class Diagram for the Reference List Formatter.

Parker

39

It should also include the following methods:

• any necessary constructors
• setPublisher
• setCity
• setState
• setCountry
• setBook (to set all clsBook instance variables. Provide three versions to handle all varia-

tions of dates or use optional parameters.)
• getPublisher
• getCity
• getState
• getCountry
• formatMLA (Overrides)
• formatAPA (Overrides)
• formatChicago (Overrides)

Part III, Step 2: Create a new class called clsChapter that inherits from clsBook. It should also
add class members indicated in Figure 1, including the following instance variables:

• editor (ArrayList of names)
• bookTitle
• beginningPage
• endingPage

It should also add the following methods:

• setEditor
• setBookTitle
• setBeginningPage
• setEndingPage
• setChapterInfo (to set all clsChapter instance variables. Three versions to handle all

variations of dates or use optional parameters.)
• getEditorLastFirstMi
• getEditorLastFiMi
• getEditorLastFiMi_FirstMiLast
• getEditorFiMiLast
• getEditorLastFirstMi_FirstMiLast
• getEditorFirstMiLast
• getBookTitle
• getBeginningPage
• getEndingPage
• resetNumEditors
• formatMLA (Overrides)
• formatAPA (Overrides)
• formatChicago (Overrides)

Part III, Step 3: Create a new class called clsJournal that inherits from clsReference. It should
also add class members indicated in Figure 1, including the following instance variables:

• source
• volume

javascript:win(550, 50, 80, 80, 'tooltips/clsBook.htm#setPublisher')�
javascript:win(550, 50, 80, 80, 'tooltips/clsBook.htm#setCity')�
javascript:win(550, 50, 80, 80, 'tooltips/clsBook.htm#setState')�
javascript:win(550, 50, 80, 80, 'tooltips/clsBook.htm#setCountry')�
javascript:win(550, 50, 80, 80, 'tooltips/clsBook.htm#setBook')�
javascript:win(550, 50, 80, 80, 'tooltips/clsBook.htm#getPublisher')�
javascript:win(550, 50, 80, 80, 'tooltips/clsBook.htm#getCity')�
javascript:win(550, 50, 80, 80, 'tooltips/clsBook.htm#getState')�
javascript:win(550, 50, 80, 80, 'tooltips/clsBook.htm#getCountry')�
javascript:win(550, 50, 80, 80, 'tooltips/clsBook.htm#formatMLA')�
javascript:win(550, 50, 80, 80, 'tooltips/clsBook.htm#formatAPA')�
javascript:win(550, 50, 80, 80, 'tooltips/clsBook.htm#formatChicago')�
javascript:win(550, 50, 80, 80, 'tooltips/clsChapter.htm#setEditor')�
javascript:win(550, 50, 80, 80, 'tooltips/clsChapter.htm#setBookTitle')�
javascript:win(550, 50, 80, 80, 'tooltips/clsChapter.htm#setBeginningPage')�
javascript:win(550, 50, 80, 80, 'tooltips/clsChapter.htm#setEndingPage')�
javascript:win(550, 50, 80, 80, 'tooltips/clsChapter.htm#setChapterInfo')�
javascript:win(550, 50, 80, 80, 'tooltips/clsChapter.htm#getEditorLastFirstMi')�
javascript:win(550, 50, 80, 80, 'tooltips/clsChapter.htm#getEditorLastFiMi')�
javascript:win(550, 50, 80, 80, 'tooltips/clsChapter.htm#getEditorLastFiMi_FirstMiLast')�
javascript:win(550, 50, 80, 80, 'tooltips/clsChapter.htm#getEditorFiMiLast')�
javascript:win(550, 50, 80, 80, 'tooltips/clsChapter.htm#getEditorLastFirstMi_FirstMiLast')�
javascript:win(550, 50, 80, 80, 'tooltips/clsChapter.htm#getEditorFirstMiLast')�
javascript:win(550, 50, 80, 80, 'tooltips/clsChapter.htm#getBookTitle')�
javascript:win(550, 50, 80, 80, 'tooltips/clsChapter.htm#getBeginningPage')�
javascript:win(550, 50, 80, 80, 'tooltips/clsChapter.htm#getEndingPage')�
javascript:win(550, 50, 80, 80, 'tooltips/clsChapter.htm#resetNumEditors')�
javascript:win(550, 50, 80, 80, 'tooltips/clsChapter.htm#formatMLA')�
javascript:win(550, 50, 80, 80, 'tooltips/clsChapter.htm#formatAPA')�
javascript:win(550, 50, 80, 80, 'tooltips/clsChapter.htm#formatChicago')�

The Reference List Formatter

40

• number
• beginningPage
• endingPage

It should also add the following methods:

• setSource
• setVolume
• setNumber
• setBeginningPage
• setEndingPage
• setJournalInfo (to set all clsJournal instance variables. Three versions to handle all varia-

tions of dates or use optional parameters.)
• getSource
• getVolume
• getNumber
• getBeginningPage
• getEndingPage
• formatMLA (Overrides)
• formatAPA (Overrides)
• formatChicago (Overrides)

See Appendix E for detailed descriptions of each method listed above.

Submissions for this deliverable
Table 2 provides a description of the buttons shown in Figures 5-8 in Appendix C. Note: In this
deliverable you are not required to add each reference entry to an array or ArrayList of refer-
ences. That will be addressed in the next deliverable. For now you are still working with individ-
ual references.

Deliverable 6: Polymorphism
• Objectives: Use ArrayLists to demonstrate the polymorphic properties of objects.

• Description: This deliverable is intended to provide you with experience using polymor-
phism, ArrayLists, and simple file I/O.

Recall that polymorphism refers to the ability of a language to have duplicate method names in an
inheritance hierarchy and to decide which method is appropriate to call depending on the class of
object to which the method is applied. Polymorphism allows a number of different classes of ob-
jects to respond to the same request by providing subclasses with methods with the same name
and signature as a method in the superclass.

javascript:win(550, 50, 80, 80, 'tooltips/clsJournal.htm#setSource')�
javascript:win(550, 50, 80, 80, 'tooltips/clsJournal.htm#setVolume')�
javascript:win(550, 50, 80, 80, 'tooltips/clsJournal.htm#setNumber')�
javascript:win(550, 50, 80, 80, 'tooltips/clsJournal.htm#setBeginningPage')�
javascript:win(550, 50, 80, 80, 'tooltips/clsJournal.htm#setEndingPage')�
javascript:win(550, 50, 80, 80, 'tooltips/clsJournal.htm#setJournalInfo')�
javascript:win(550, 50, 80, 80, 'tooltips/clsJournal.htm#getSource')�
javascript:win(550, 50, 80, 80, 'tooltips/clsJournal.htm#getVolume')�
javascript:win(550, 50, 80, 80, 'tooltips/clsJournal.htm#getNumber')�
javascript:win(550, 50, 80, 80, 'tooltips/clsJournal.htm#getBeginningPage')�
javascript:win(550, 50, 80, 80, 'tooltips/clsJournal.htm#getEndingPage')�
javascript:win(550, 50, 80, 80, 'tooltips/clsJournal.htm#formatMLA')�
javascript:win(550, 50, 80, 80, 'tooltips/clsJournal.htm#formatAPA')�
javascript:win(550, 50, 80, 80, 'tooltips/clsJournal.htm#formatChicago')�

Parker

41

Table 2: Button functions for Deliverable 5.

Button Purpose

Add Author Adds a single author to the ArrayList of authors instance variable in the book, chap-
ter, or journal object, increments the author counter, updates the author counter la-
bel, and clears the author fields.

Save Authors Depending on which radio button is clicked, moves to the correct input field.

Add Editor Adds a single editor to the ArrayList of editors instance variable, increments the
editor counter, updates the editor counter label, and clears the editor fields.

Save Editors Depending on which radio button is clicked, move to the correct input field.

Submit Book Calls the routines to set the book title, publication date, publisher, city, state, and
country. It then calls the routine to save the updated object.

Submit Chapter Calls the routines to set the chapter title, publication month, day, and year, pub-
lisher, city, state, and country where the publisher is based, book title, and begin-
ning page and ending page. It then calls the routine to save the updated object.

Submit Journal Calls the routines to set the paper title, the journal month, day, and year of publica-
tion, journal title, the beginning page and ending page, the journal volume and
number. It then calls the routine to save the updated object.

In the previous deliverable you created the clsBook, clsJournal, and clsReference classes, each
with its own specific versions of the formatMLA, formatAPA, and formatChicago methods. As
the user enters individual references they will be stored in an ArrayList of generic references.
When we later decide to format the reference list according to the MLA, APA, or Chicago style,
polymorphism allow us to cycle through the ArrayList and call the correct formatMLA, format-
APA, or formatChicago method based on the actual type of each individual element in the Array-
List. In other words, if the user opted for APA style and the first element in the ArrayList is a
book, the formatAPA method from clsBook is called. If the second element is a journal then the
formatAPA method from clsJournal is called, etc.

You will demonstrate this by allowing the user to enter a series of references. As each clsBook,
clsJournal, or clsReference is entered, it should be added to an ArrayList of clsReferences.

Set up a form (see Figures 9-12 of Appendix C) that includes radio buttons to allow the user to
select the desired format (MLA, APA, Chicago). The program should also require the user to in-
dicate where to save the formatted output using a file dialog. Be sure the new file has a .doc or
.docx extension.

After the format is chosen and the file opened, the ArrayList should be sorted by first author's last
name, first name, and middle initial, each element in the sorted ArrayList should have the re-
quested formatting method (formatMLA, formatAPA, formatChicago) called, and the resulting
string should be written to a new Word file. The output should be available for preview in a
RichTextBox control, since a RichTextBox allows the viewing of a Word file with formatting
preserved.

Sorting an array or ArrayList of clsReference objects will require that you modify clsReference to
implement IComparable and to include the CompareTo method, much as you did with the
clsName class in Deliverable 3.

http://cobhomepages.cob.isu.edu/parkerkr/Protected/CIS320/notes/21_collections.htm�
http://cobhomepages.cob.isu.edu/parkerkr/courses/CIS320/Controls/radio_buttons_VBNet.htm�
http://cobhomepages.cob.isu.edu/parkerkr/Protected/CIS320/notes/11_open_file_dialogs.htm�
http://cobhomepages.cob.isu.edu/parkerkr/Protected/CIS320/notes/21_collections.htm�

The Reference List Formatter

42

Summary
1. Data entry

a. enter reference details <from previous deliverable>

b. store references in an ArrayList

2. Format references

a. Specify destination file (Word file)

b. Select format

i. loop through ArrayList, applying the selected format, and writing to Word file.

ii. close the Word file

3. View the doc file in a RichTextBox control

Submissions for this deliverable

Table 3 provides a description of the buttons shown in Figures 9-12 of Appendix C.

Table 3: Button functions for Deliverable 6.

Button Purpose

Review Output Displays the reference ArrayList in formatted form in a RichTextBox control.

Submit Book Calls the routines to set the book title, publication date, publisher, city, state, and
country. It then calls the routine to add the updated object to the reference Array-
List.

Submit Chapter Calls the routines to set the chapter title, publication month, day, and year, pub-
lisher, city, state, and country where the publisher is based, book title, and begin-
ning page and ending page. It then calls the routine to add the updated object to the
reference ArrayList.

Submit Journal Calls the routines to set the paper title, the journal month, day, and year of publica-
tion, journal title, the beginning page and ending page, the journal volume and
number. It then calls the routine to add the updated object to the reference Array-
List.

Deliverable 7: Object Persistence
• Objectives: Complete the reference formatter system.

• Description: Finalize the reference formatter system by saving the references to a binary
or Simple Object Access Protocol (SOAP) file, and then open the file, format the refer-
ences, and write them to a Word file for future use.

Object persistence refers to objects that outlive the execution of the program in which they were
created. Without this capability, the objects and their data would only exist in memory as long as
the program in which they were created continues running and would be lost when the program
ends. Object persistence allows an object’s state to be stored in long-term storage. In future ses-
sions, the persisted objects can be restored to their previous state.

Parker

43

In the last deliverable you saved your references to an ArrayList as each one was entered. How-
ever, when you closed your program you lost the reference objects so you can never choose an
alternate format in which to display them. Further, if you want to use that reference list again you
will have to re-enter all of the data. This deliverable uses object persistence to deal with this prob-
lem.

When all references have been entered, write the entire ArrayList to a binary or SOAP file (your
choice) with a .dat extension. Note that you are writing the unformatted data to a file, not the
formatted output. Keep in mind that the user may enter his references one day, but not use them
again for several days or weeks.

Therefore, the form should include a control that will allow the user to open the dat file of refer-
ences that you created and saved in the previous step. The user will also want to specify the refer-
ence format that is desired. Thus, the form should also have radio buttons to allow the user to se-
lect the new format desired (MLA, APA, Chicago). The user will also need to specify the Word
file in which to save the formatted output using a SaveFileDialog, as in the previous deliverable.
Be sure the new file has a .doc or .docx extension.

After the format is chosen the dat file of references should be opened and the references should
be read into an ArrayList of objects (or some type of “widened” reference). Then the array should
be sorted by first author's last name, each element in the sorted array should have the proper for-
matting method (formatMLA, formatAPA, formatChicago) applied, and the resulting string
should be written to a new Word file. You should provide a preview of the formatted output in a
RichTextBox control.

Summary
1. Create source file

a. enter reference details <from previous deliverable>

b. store references in an ArrayList <from previous deliverable>

c. save UNFORMATTED references to a binary or SOAP file (.dat file)

2. Format references

a. Specify source file

i. open file (.dat file)

ii. read file into array

iii. close file (.dat file)

iv. sort ArrayList <from previous deliverable>

b. Specify destination file (Word file) <from previous deliverable>

c. Select format

i. loop through ArrayList, applying the selected format, and writing to Word
file. <from previous deliverable>

ii. close the Word file <from previous deliverable>

http://cobhomepages.cob.isu.edu/parkerkr/Protected/CIS320/notes/11_object io.htm�
http://cobhomepages.cob.isu.edu/parkerkr/Protected/CIS320/notes/11_open_file_dialogs.htm�
http://cobhomepages.cob.isu.edu/parkerkr/Protected/CIS320/notes/11_open_file_dialogs.htm�
http://cobhomepages.cob.isu.edu/parkerkr/Protected/CIS320/notes/file_processing.htm#Writing%20to%20a%20File�

The Reference List Formatter

44

Submissions for this deliverable

You will need to provide a user-friendly interface for this final deliverable similar to that shown
in Figures 13-21 of Appendix C. Be sure to use menus and tab controls. Table 4 provides a de-
scription of the menu selections shown in Figures 13-21.

Table 4: Menu functions for Deliverable 7.

Menu Item Purpose

File Opens the File submenu.

 Open Existing Source File Open existing file of previously entered references, i.e., the binary or
SOAP file that contains the unformatted references. It then reads the file
contents into an ArrayList and then sorts the ArrayList. Additional ref-
erences can be added by the Edit - Add References item.

 Print Preview View your reference list in various reference styles by selecting MLA,
APA, or Chicago.

 MLA Selects MLA reference style for the preview.

 APA Selects APA reference style for the preview.

 Chicago Selects Chicago reference style for the preview.

 Save Reference File Select MLA, APA, or Chicago reference style and the application al-
lows you to specify the destination doc file in which you want the sorted
reference list to be stored. It then opens the file and returns the filename
through a form-level variable.

 MLA Selects MLA reference style for the saved reference list. Loops through
the ArrayList and applies the MLA format to every reference and writes
the result to the destination file.

 APA Selects APA reference style for the saved reference list. Loops through
the ArrayList and applies the MLA format to every reference and writes
the result to the destination file.

 Chicago Selects Chicago reference style for the saved reference list. Loops
through the ArrayList and applies the MLA format to every reference
and writes the result to the destination file.

 Exit Exits the application.

Edit Opens the Edit submenu.

 Add References Opens the reference entry form so new references can be added.

Help Opens a Help screen.

Parker

45

Instructors’ Resources
Instructor resources will be made available to those who adopt this project. Those who can pro-
vide proof of appointment as an educator can contact the author for access to resources such as
downloadable demos for each deliverable, sample solutions (written in Visual Basic .NET) for
each deliverable, sample code for each deliverable, and grading rubrics for each deliverable.

Conclusion
This project serves to integrate all of the critical concepts in object-oriented development – ab-
straction, encapsulation, inheritance, and polymorphism – as well other important concepts like
aggregation, abstract interfaces, method overriding, dynamic binding, data structures of objects,
and object persistence. Unlike most toy problems this project takes an imposing system to com-
pletion. The students start with one deliverable and continue to build upon and enhance that de-
liverable through each stage of the requirements. In this way students gain experience developing
a larger system than most toy projects allow. The project is large enough that programming teams
can be used if desired, as can agile development techniques. Further, the project is designed to
ensure extensibility in that additional reference types as well as additional formatting styles can
be easily incorporated. Unlike a “live” or real world problem, the complexity can be controlled by
the professor and the project is able to involve all course concepts that the professor wants to re-
inforce.

The project is not without its shortcomings. As noted, if students are unable to complete a deliv-
erable they can be provided a sample solution. However, this requires strict enforcement of dead-
lines because a sample solution cannot be handed out until all submissions are in. During testing
it was found that allowing a cushion as little as a week leads to a detrimental delay before a sam-
ple solution is provided, because deliverable due dates were separated by at most two weeks, and
sometimes only one week. The sample solution was sometimes not available until it was too late
to be of use.

Further, students who failed to complete a deliverable often lacked adequate understanding to
complete subsequent deliverables. For example, if a student is unable to successfully design a
class, they most certainly will have difficulty with aggregation, which involves creating a class
that includes instance variables that can themselves be classes. In another case, if a student has
trouble creating an ArrayList or array of objects, then using those data structures later to demon-
strate polymorphism is likely to be problematic. However, this problem can manifest itself in tra-
ditional programming assignments as well.

The user interface can also present students with problems. Past students were often unable to
determine the purpose of some of the required buttons, such as the Add Authors button or Save
Authors button in Deliverable 5. Detailed explanations such as that included in Table 2 can help
to alleviate student confusion. Other user interface difficulties stem from student inexperience
with lesser-used graphical user interface controls. Although controls like file dialogs, tab controls,
and RichTextBoxes are available in many programming languages, they may have different im-
plementations (e.g., RichTextBox versus JEditorPane). Further, students may not have been ex-
posed to them in previous courses and may be intimidated when required to implement them as
part of a deliverable interface. Again, this problem can be encountered in traditional program-
ming assignments as well.

Finally, although it seems evident that a project that covers all core concepts of a course has in-
trinsic value, project effectiveness has not been evaluated. While it has been used in multiple
classes, it has undergone refinement each time. During the semester in which it finally reached its
finished state, the curriculum was revised and the course became an elective. Since then, there has
not been adequate demand to teach the course again and therefore there has been no opportunity

The Reference List Formatter

46

to gather empirical evidence that the project enhances the learning experience of students. Future
research will involve evaluating project effectiveness, but it will most likely require collaborating
with colleagues at other universities who are willing to evaluate the project in their classes.

In spite of these limitations the project provides students with hands-on experience with not only
the four principle concepts upon which object-oriented design and programming rest, but other
key concepts as well. Student evaluations have noted that the project “matches the concepts being
taught well.” It also enables students to glimpse the complexity that they will encounter upon en-
tering the work force. Students realize this, with one pointing out that the project deliverables
“were practical and had real-world application.” Another student commented, “I liked working on
one major project throughout the semester. It allowed us to experience working on a large pro-
ject.” So while the project has not been empirically evaluated, it serves the purpose for which it
was developed: to reinforce critical object-oriented concepts and to give students experience
working through a realistic project modeled on a scenario that they might encounter in their fu-
ture work environment.

References
Association of Project Management. (2000). Syllabus for the APMP examination (2nd Ed). High Wy-

combe, UK: Association of Project Management. Retrieved November 23, 2009 from
http://www.pmir.com/html/pmdatabase/file/Ebook/APMP.pdf

Bednar, A., Cunningham, D., Duffy, T., & Perry, J. (1992). Theory into practice: How do we link? In T.
Duffy & D. Jonassen (Eds.), Constructivism and the technology of instruction (pp. 17-34). Hillsdale,
NJ: Lawrence Erlbaum Associates. Retrieved November 24, 2009 from
http://books.google.com/books?id=7Uv8NHvKK44C&lpg=PA17&ots=XNfIXxU9rz&dq=%22Theory
%20into%20Practice%3A%20how%20do%20we%20link%22%20Bednar%201992&pg=PA17#v=one
page&q=&f=false

Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex
interventions in classroom settings. Journal of the Learning Sciences, 2(2), 141-178. Retrieved No-
vember 24, 2009 from http://inkido.indiana.edu/syllabi/p500/brown1992.pdf

Cavanaugh, C. (2004). Project-based learning in undergraduate educational technology. In R. Ferdig et al.
(Eds.), Proceedings of Society for Information Technology & Teacher Education International Confer-
ence 2004 (pp. 2010-2016). Chesapeake, VA: Association for the Advancement of Computing in Edu-
cation. Retrieved from http://www.coe.ufl.edu/faculty/cathycavanaugh/docs/PBL2040.pdf

Davis, E., & Morgenstern, L. (2004). Progress in formal commonsense reasoning. Artificial Intelligence,
153(1-2), 1-12. Retrieved November 23, 2009 from http://www.ccs.neu.edu/home/futrelle/ai-
ccis/seminar/papers/davis-morgenstern-common_sense.pdf

Delaney, R. (2009). Citation style for research papers. B. Davis Schwartz Memorial Library, C.W. Post
Campus, Long Island University. Retrieved November 12, 2009 from
http://www.liunet.edu/cwis/cwp/library/workshop/citation.htm

Ensmenger, N. L. (2004). Computing for the humanities and social sciences. In W. Aspray & A. Akera
(Eds.), Using history to teach computer science and related disciplines (pp. 89-94). Washington, D.C.:
Computing Research Association. Retrieved November 12, 2009 from
http://www.cra.org/reports/using.history.pdf

Fisher, D., & Frey, N. (2007). Using projects and performances to check for understanding. In Checking for
understanding: Formative assessment techniques for your classroom (pp. 79-97). Alexandria, VA: As-
sociation for Supervision and Curriculum Development. Retrieved November 23, 2009 from
http://www.ascd.org/publications/books/107023/chapters/Using_Projects_and_Performances_to_Chec
k_for_Understanding.aspx

Frank, J. H. (n.d.). The K.I.S.S. Pages. Gainesville, FL: University of Florida, Entomology and Nematology
Department. Retrieved November 23, 2009 from http://entomology.ifas.ufl.edu/frank/KISS/

http://www.pmir.com/html/pmdatabase/file/Ebook/APMP.pdf�
http://books.google.com/books?id=7Uv8NHvKK44C&lpg=PA17&ots=XNfIXxU9rz&dq=%22Theory%20into%20Practice%3A%20how%20do%20we%20link%22%20Bednar%201992&pg=PA17#v=onepage&q=&f=false�
http://books.google.com/books?id=7Uv8NHvKK44C&lpg=PA17&ots=XNfIXxU9rz&dq=%22Theory%20into%20Practice%3A%20how%20do%20we%20link%22%20Bednar%201992&pg=PA17#v=onepage&q=&f=false�
http://books.google.com/books?id=7Uv8NHvKK44C&lpg=PA17&ots=XNfIXxU9rz&dq=%22Theory%20into%20Practice%3A%20how%20do%20we%20link%22%20Bednar%201992&pg=PA17#v=onepage&q=&f=false�
http://inkido.indiana.edu/syllabi/p500/brown1992.pdf�
http://www.coe.ufl.edu/faculty/cathycavanaugh/docs/PBL2040.pdf�
http://www.ccs.neu.edu/home/futrelle/ai-ccis/seminar/papers/davis-morgenstern-common_sense.pdf�
http://www.ccs.neu.edu/home/futrelle/ai-ccis/seminar/papers/davis-morgenstern-common_sense.pdf�
http://www.liunet.edu/cwis/cwp/library/workshop/citation.htm�
http://www.cra.org/reports/using.history.pdf�
http://www.ascd.org/publications/books/107023/chapters/Using_Projects_and_Performances_to_Check_for_Understanding.aspx�
http://www.ascd.org/publications/books/107023/chapters/Using_Projects_and_Performances_to_Check_for_Understanding.aspx�
http://entomology.ifas.ufl.edu/frank/KISS/�

Parker

47

Gallagher, S. A., Stepien, W. J., & Rosenthal, H. (1992). The effects of problem-based learning on problem
solving. Gifted Child Quarterly, 36(4), 195-200.

Ghezzi, C., & Mandrioli, D. (2005). The challenges of software engineering education. Proceedings of the
27th International Conference on Software Engineering (pp. 637-638). Retrieved November 12, 2009
from http://home.dei.polimi.it/mandriol/SitoItaliano/ICSE05-EDU-Paper.pdf

Henze, N., & Nejdl, W. (1997). A web-based learning environment: Applying constructivist teaching con-
cepts in virtual learning environments. In F. Verdejo & G. Davies (Eds.), The virtual campus: Trends
for higher education and training (pp. 63-77). New York, NY: Chapman & Hall. Retrieved November
24, 2009 from http://www.kbs.uni-hannover.de/paper/97/ifip97/paper15.ps

Jazayeri, M. (2004). The education of a software engineer. Proceedings of the 19th IEEE International
Conference on Automated Software Engineering (pp. 18-27). Retrieved November 12, 2009 from
http://www.inf.usi.ch/faculty/jazayeri/docs/papers/educationofSEASE.pdf

Jones, B. F., Rasmussen, C. M., & Moffitt, M. C. (1997). Real-life problem solving: A collaborative ap-
proach to interdisciplinary learning. Washington, DC: American Psychological Association.

Julian day. (2009, November 19). In Wikipedia, the free encyclopedia. Retrieved November 24, 2009, from
http://en.wikipedia.org/wiki/Julian_day

Oberon Development. (2006). Bibliographies and reference lists. In Citation Help. Retrieved November 12,
2009 from http://www.citationonline.net/CitationHelp/c8i11diffstyles.htm

Odriscoll, S. (2008, February 21). Apostrophe in your name can cause a world O'trouble. Denver Post. Re-
trieved November 24, 2009 from http://www.denverpost.com/ci_8329730

Piccinini, N., & Scollo, G. (2006). Cooperative project-based learning in a web-based software engineering
course. Educational Technology & Society, 9(4), 54-62. Retrieved November 23, 2009 from
http://www.ifets.info/journals/9_4/6.pdf

Scardamalia, M., & Bereiter, C. (1991). Higher levels of agency for children in knowledge building: A
challenge for the design of new knowledge media. Journal of the Learning Sciences, 1(1), 37-68.

Suffix. (2009, October 6). In Wikipedia, the free encyclopedia. Retrieved November 23, 2009 from
http://en.wikipedia.org/wiki/Suffix_(name)

Thomas, J. W. (2000). A review of research on project-based learning. San Rafael, CA: The Autodesk
Foundation. Retrieved November 23, 2009 from http://www.bie.org/files/researchreviewPBL_1.pdf

Thomas, J. W., Mergendoller, J. R., & Michaelson, A. (1999). Project-based learning: A handbook for
middle and high school teachers. Novato, CA: The Buck Institute for Education.

Turk, D. E., & Vaishnavi, V. K. (2000). Software process models are software too: A domain class model
for process models. Proceedings of IRMA 2000: 11th International Conference of the Information Re-
sources Management Association (pp. 548-550). Retrieved November 24, 2009 from
http://books.google.com/books?id=8DVcV9Smk3oC&lpg=PA548&dq=Process%20Models%20are%2
0Software%20Too&pg=PA548#v=onepage&q=Process%20Models%20are%20Software%20Too

Von Kotze, A., & Cooper, L. (2000). Exploring the transformative potential of project-based learning in
university adult education. Studies in the Education of Adults, 32 (2), 212-228.

Warlick, D. (2002). Raw materials for the mind. Raleigh, NC: The Landmark Project.

http://home.dei.polimi.it/mandriol/SitoItaliano/ICSE05-EDU-Paper.pdf�
http://www.kbs.uni-hannover.de/paper/97/ifip97/paper15.ps�
http://www.inf.usi.ch/faculty/jazayeri/docs/papers/educationofSEASE.pdf�
http://en.wikipedia.org/wiki/Julian_day�
http://www.citationonline.net/CitationHelp/c8i11diffstyles.htm�
http://www.denverpost.com/ci_8329730�
http://www.ifets.info/journals/9_4/6.pdf�
http://en.wikipedia.org/wiki/Suffix_(name)�
http://www.bie.org/files/researchreviewPBL_1.pdf�
http://books.google.com/books?id=8DVcV9Smk3oC&lpg=PA548&dq=Process%20Models%20are%20Software%20Too&pg=PA548#v=onepage&q=Process%20Models%20are%20Software%20Too&f=false�
http://books.google.com/books?id=8DVcV9Smk3oC&lpg=PA548&dq=Process%20Models%20are%20Software%20Too&pg=PA548#v=onepage&q=Process%20Models%20are%20Software%20Too&f=false�

The Reference List Formatter

48

Appendixes
In order to conserve space appendixes are located online using the following link:
http://cobhomepages.cob.isu.edu/parkerkr/InSite2010/Appendixes.docx

Appendix A: Reference Styles Help Sheet
Appendix B: clsDate Using Generic Approach for Deliverable 2
Appendix C: Sample Screen Shots
Appendix D: Method Details for Deliverable 4
Appendix E: Method Details for Deliverable 5
Appendix F: VB Tips

Biography
Dr. Kevin R. Parker is a Professor of Computer Information Systems
at Idaho State University. He has taught both computer science and
information systems courses over the course of his nineteen years in
academia. Dr. Parker’s research interests include e-commerce mar-
keting, competitive intelligence, knowledge management, the Seman-
tic Web, and information assurance. He has published in such jour-
nals as Informing Science: the International Journal of an Emerging
Transdiscipline, Journal of Information Technology Education, Jour-
nal of Information Systems Education, and Communications of the
AIS. Dr. Parker’s teaching interests include web development tech-
nologies, programming languages, data structures, and database man-
agement systems. Dr. Parker holds a B.A. in Computer Science from
the University of Texas at Austin (1982), an M.S. in Computer Sci-

ence from Texas Tech University (1991), and a Ph.D. in Management Information Systems from
Texas Tech University (1995). Before entering academia Dr. Parker was a programmer/analyst
with Conoco, Inc.

http://cobhomepages.cob.isu.edu/parkerkr/InSite2010/Appendixes.docx�

	The Reference List Formatter:An Object-Oriented Development Project
	Kevin R. Parker Idaho State University, Pocatello, Idaho, USA

	Abstract
	Introduction
	Background
	Overview of Requirements
	Detailed Requirements
	Deliverable 1: Abstraction
	Part I: clsName
	Part II: clsDate
	Submissions for this deliverable

	Deliverable 2: Encapsulation
	Part 1: clsName
	Part 2: clsDate
	Submissions for this deliverable

	Deliverable 3: ArrayLists of Objects
	Submissions for this deliverable
	Note

	Deliverable 4: Aggregation
	Submissions for this deliverable

	Deliverable 5: Abstract Classes, Abstract Interfaces, and Inheritance
	Part I: Abstract classes
	Part II: Abstract interfaces
	Part III: Inheritance
	Part III, Step 1: Create a new class called clsBook that is derived from clsReference. It should add new class members, including the following instance variables:
	Submissions for this deliverable

	Deliverable 6: Polymorphism
	Summary
	Submissions for this deliverable

	Deliverable 7: Object Persistence
	Summary
	Submissions for this deliverable

	Instructors’ Resources
	Conclusion
	References
	Appendixes
	Biography

