
Selecting software tools for IS/IT curricula

Kevin R. Parker

Published online: 20 April 2010
Springer Science+Business Media, LLC 2010

Abstract The evaluation and selection of software tools for use in an IS or IT
curriculum is difficult not only because actual industry software tools are often used
but also because there is no formal approach to guide the process. How does one
choose between SQL Server and MySQL, or Dreamweaver and Expression Studio?
IS and IT educators must periodically go through the process of assessing the most
suitable tools for their courses. Given how common such decisions are and how
frequently they must be made, it is surprising to find that there is a lack of literature
that deals with comparative studies of software tools for higher education. This paper
proposes a set of criteria for the selection of software tools for IS and IT programs,
explains how multi-criteria decision analysis can be used to weight those criteria,
and details an approach for the application of those weighted criteria. The proposed
approach is structured and replicable, and allows for a more thorough evaluation of
the available options and a more easily supportable selection.

Keywords Software tool selection . IS/IT software tools . Software evaluation .

Educational software . Multi-criteria decision analysis . Analytic hierarchy process

1 Introduction

The evaluation and selection of software for use in the classroom is seldom an easy
undertaking. This has traditionally been even more difficult in an information
systems (IS) or information technology (IT) curriculum in which actual industry
software tools are often used. The issue of determining the most appropriate software
tools for instructional purposes is not new, but as the tools keep changing and
evolving, options may also change (Beise 2006).

Educ Inf Technol (2010) 15:255–275
DOI 10.1007/s10639-010-9126-8

K. R. Parker (*)
Idaho State University, 921 S. 8th Ave., Stop 8020, Pocatello, ID 83209-8020, USA
e-mail: parkerkr@isu.edu

To paraphrase Denton and Peace (2004), IS and IT instructors are constantly
trying to determine how best to provide meaningful hands-on experiences for
students. Ideally, software would be readily available for students to perform
homework exercises, practice and reinforce course concepts, and develop functional
projects. Software tool use in a course should simulate as closely as possible an
enterprise experience. However, given the complexity and expense of most
enterprise-wide systems and the limited free time that most instructors have to
learn, install, implement, and teach such systems, careful consideration is required to
select software that will offer the most valuable educational experience to students.
Both students and instructors should be able to focus on essential course concepts
rather than struggling with details of a complex technical software product.

The state of information technology itself contributes to the difficulties in
software evaluation and selection because there is often a large variety of candidate
software packages, technology evolves rapidly and continuously, evaluation
paradigms are inadequate, software packages may be available on a variety of
platforms, and many individuals involved in the decision-making process lack
sufficient technical backgrounds. Decisions are often based on individual agendas or
superficial familiarity with a package rather than on a formal evaluation that allows
software to be analyzed in a consistent, structured, and replicable manner (Huber and
Giuse 1995).

There are many variables that must be considered when selecting such software.
How does one go about choosing between SQL Server and MySQL, or assessing the
pros and cons of Dreamweaver versus Expression Web, or deciding between Visible
Analyst and ERwin, or selecting Microsoft’s Project 2007 versus Rally? The list
goes on and on, and IS and IT educators must periodically go through the process of
selecting the most suitable tools for their courses. A formal process is needed
because the selection and evaluation of software tools must be done in a consistent,
quantifiable manner to be effective. By using a formal method, the justification for
the selection decision is not just based on technical, intuitive, or political factors
(Bandor 2006).

Given how common such decisions are and how frequently they must be made,
one would expect numerous narrowly-focused studies on the topic. However,
software evaluation criteria are not clearly defined and elaborated in the literature
(Jadhav and Sonar 2009). A literature search revealed very few manuscripts directly
related to this decision-making process. Beise (2006) confirms that there is little
previous literature that deals with comparative studies of software tools for higher
education. Jadhav and Sonar (2009) also observe that little work has been done on
establishing a generic methodology that can be used for the selection of software
packages of any type. They go on to state that there is lack of software evaluation
criteria, and therefore there is need to develop a framework comprised of a software
selection methodology, an evaluation technique, an evaluation criteria, and a system
to help decision makers in the software selection process (Jadhav and Sonar 2009).

This apparent dearth of relevant research in software tool selection for IS and IT
programs prompted related alternatives to be considered. In 2006 Parker, Ottaway,
and Chao published two papers (Parker et al. 2006a, b) that proposed and then
refined a structured approach for the selection of an appropriate language for
programming courses, stating that it “would enable a more thorough evaluation of

256 Educ Inf Technol (2010) 15:255–275

the available options and a more easily supportable selection.” This paper will
attempt to adapt those criteria to the selection of software tools for use in an IS or IT
curriculum.

2 Related work

Before reviewing previous research on software selection it first must be pointed out
that “the terms evaluation, review, and selection are all used in the literature on
assessment of educational software, though different writers use some or all of these
words with slightly different meanings” (Squires and McDougall 1994, p. 3).

The search for literature dealing with the selection of software tools for IS/IT
degree programs started with a series of ill-conceived searches that included the
phrase “educational software.” While such a search returns a large result set, it was
soon discovered that “educational software” is generally used to refer to software for
primary school children. Further, this fact is often obscured since many if not most
of the “educational software” studies fail to indicate exactly what type of software
they are proposing to evaluate.

2.1 Software tool selection for higher education

Once it became obvious that research focusing on the evaluation of educational
software was not entirely germane to our purposes, the search turned toward
“software tool selection.” The resulting papers cover a wide range of topics
somewhat related to software selection for higher education.

Huber and Giuse (1995) present an educational software evaluation process to
facilitate timely recommendations for product acquisitions. The process is structured
in such a way that both content and technical experts are involved in assessing
coverage of breadth and depth of subject, clarity of presentation, quality of
construction, and ease of use. The process employs a bi-level evaluation instrument,
which required the construction of two evaluation forms to support each level of the
assessment. The first form is concerned primarily with software content and ease of
use. The second form consists of a series of open-ended comment sections
concerning intended users, content, system requirements, support, usability,
performance, customizability, and documentation.

Kao et al. (2000) propose a paradigm for selecting institutional software. While
they never explain exactly what institutional software is, their example institution is
a university. The proposed paradigm begins with finding a suitable framework for
guiding the integration of the software into the institution and customizing it to suit
the institution’s needs. Institutional guidelines and policies relevant to selecting
proper software must be taken into account, as must specific evaluation criteria.
Their example demonstrates the synthesis of several frameworks into a new
framework for selecting on-line courseware for an educational institution.

Both the study by Beise (2006) and that by Denton and Peace (2004) deal with
database course tool selection. The software selected for use in database courses can
generally be categorized as one of three types: commercial enterprise software, such
as Oracle or IBM’s DB2; personal database software, such as Microsoft Access; or

Educ Inf Technol (2010) 15:255–275 257257

software available for no cost (including open source software), such as PostgreSQL
or MySQL (Denton and Peace 2004). Beise (2006) derives several criteria that
determine the choice of software, including cost, technical support, supporting
resources, industry relevance, and accessibility. She points out that the results of her
analysis are consistent with that of Denton and Peace (2004), whose criteria included
cost, ease of use, security, functionality, job market appeal, and compatibility. A
discussion of the individual criterion will be deferred.

Lancor (2008) describes the experiences of selecting a collaboration tool for a
software engineering course that requires group work throughout the semester. Her
selection process was less structured than the studies previously discussed, focusing
on type (project management or collaboration tool type), pricing, installation
requirements, and other common features. Her focus was more on the tool selected
rather than the selection process for the tool.

2.2 Software selection for non-educational entities

After finding limited literature on the selection of software tools for higher
education, it was decided to review the studies that pertain to the process by which
commercial entities select software tools. This is a reasonable progression since the
software used in IS and IT programs is most often professional-grade software. Fritz
and Carter (1994) performed a study to assist an organization that provides advice to
clients considering applications software purchases, and as such they identify,
characterize, classify, and describe eleven distinct software evaluation and selection
methodologies. Jadhav and Sonar (2009) provide an even more thorough review of
the literature in the field of evaluation and selection of software packages.

Other studies focus on the various steps required in the selection and procurement of
commercial off-the-shelf (COTS) application software for a specific business, including
Requests for Proposals and Requests for Bids. Many organizations utilize component
libraries or extensions, or complete COTS-based solutions such as ERP applications
(Bandor 2006). A sampling of studies devoted to the COTS decision includes (Carney
and Wallnau 1998; Dean and Vigder 2000; Franch and Carvallo 2003; Kontio 1996;
Kontio et al. 1995; Lin et al. 2006; Torchiano et al. 2002). Most of these papers
propose a new systematic process for evaluating and ranking COTS software, or
discuss existing practices. Related research examines the selection of applications
software or software technology, and includes (Anderson 1990; Filho et al. 2005;
Obeidat 2006; Rowley 1992; van Staaden and Lubbe 2006). Many of these studies
present criteria to be used in the selection process, and these will be discussed later.

Some studies are more narrowly focused, examining the selection of a particular
type of software. Filho et al. (2005) focus on the selection of decision analysis
software. Min (1992) looks at the purchase of logistics software. Bosilj-Vuksic et al.
(2007), Davis and Williams (1994), and Nikoukaran et al. (1998) consider the
process of simulation software package selection by businesses. Literature by
Baki and Çakar (2005), Güngör ŞEN and Baraçli (2006), and Teltumbde (2000)
provide a small sample of the studies that deal with ERP selection. Donham (2004),
Hauge et al. (2009), and Polančič et al. (2004) provide examples of research in
evaluating open source products based on multiple criteria of software quality.
Kannan and Vinay (2008) discuss the selection of CAD/CAM systems. Lai et al.

258 Educ Inf Technol (2010) 15:255–275

(1999) examine the selection of multimedia authoring systems. Ngai and Chan
(2005) provide a framework for the evaluation of knowledge management tools.

2.3 Educational software selection

As noted earlier, educational software research is only tangentially related to this
study, but it seems advisable to make a rapid assessment of some of the studies.

Although educational software has been defined as “any software that is used in
an educational context, whether or not it was specifically designed for educational
use” (Squires and McDougall 1994, p.2), that is rather misleading. Educational
software generally seems to “be of five basic types: tutorial, drill and practice,
simulation/game, information, and management and assessment” (Ahmed 2003,
p.2). Plaza et al. (2009) provide a thorough and excellent literature review regarding
evaluation of educational software. Some of these studies propose criteria that seem
appropriate when evaluating many types of software tool.

While checklists are commonly used in selecting educational software, several
studies note serious problems with the checklist approach, including a focus on
technical rather than educational issues, unknown validity of criteria, shortcomings
for assessing quality and instructional efficacy, lack of tailored criteria, and a
reliability on past usability evaluations that makes them inadequate for evaluating
new and innovative user interfaces (Bednarik et al. 2004; Hosie et al. 2005;
McDougall and Squires 1995; Squires and McDougall 1994; Squires and Preece
1996; Squires and Preece 1999; Tergan 1998).

Not everyone is as critical of checklists. Susser (2001) examines the main
objections to the use of checklists one by one, explaining either that the criticism is
unjustified or that it applies equally to any form of courseware evaluation. The usage
of checklists brings an ease of performing, collecting, processing, and maintaining
evaluations (Bednarik et al. 2004). In most cases generic checklists are adequate
enough, since creating domain specific checklists is a time-consuming and expensive
task that is often left undone (Gerdt et al. 2002).

Some studies go beyond pointing out inadequacies with existing evaluation
approaches and propose new approaches. Most of these approaches claim to be
comprehensive in scope, taking into account not only appearance and functionality,
but also features for managing instruction and assessing learners (Ahmed 2003;
Bednarik et al. 2004; Gerdt et al. 2002; Hosie et al. 2005; Lê and Lê 2007; Plaza et
al. 2009; Squires and McDougall 1994; Squires and McDougall 1996; Squires and
Preece 1996; Squires and Preece 1999; Tergan 1998; Voogt 1990).

2.4 Programming language selection

As noted earlier, none of the above studies provides exactly what is being sought: an
easily adapted selection process for software tools for IS and IT curricula. However,
selecting a programming language for introductory programming courses is a chore
faced by both IS and IT programs, and studies dealing with that selection process
propose approaches that appear to be both pertinent and adaptable to the selection of
other types of software tools. Papers by Parker et al. (2006a, b) and Mannila and de
Raadt (2006) seem to hold the most promise.

Educ Inf Technol (2010) 15:255–275 259259

3 An overview of the programming language selection approach

The selection criteria proposed by Parker et al. (2006a, b) and that attributed to
Mannila and de Raadt (2006) were examined. Mannila and de Raadt’s intent was to
compare specific introductory programming languages, and they advance a list of
criteria by which that comparison can be made. An assessment of Mannila and de
Raadt’s criteria compared to the Parker et al. (2006a, b) criteria was made, and it was
determined that the features of Mannila and de Raadt’s criteria that could be adapted
to the selection of software tools were subsumed by the criteria offered by Parker et
al. (2006a, b).

Parker et al. (2006a, b) point out that a structured approach for selecting
programming languages is needed because too often it has been handled through an
informal process involving faculty evaluation, discussion, and consensus. Such an
approach lacks structure and replicability. They propose an instrument and a
methodology that will allow the process to be more easily repeated in the future.

A set of evaluation criteria was proposed in Parker et al. (2006a) and
subsequently refined in Parker et al. (2006b). The criteria are based on over sixty
studies relevant to language selection and justified by a brief review of the
supporting literature in Parker et al. (2006a, b). Each of the criteria has been
suggested in one or more previous studies that evaluate programming languages.
Table 1 first appeared in Parker, et al. (2006b) and presents the criterion groupings.

4 Adaptations necessary to assess software tools

An examination of the criteria presented above indicates that many of them can be
adapted for use in the assessment and selection of software tools. Some criteria are
not applicable and will be dropped from consideration, and the remaining criteria
will be regrouped. Some of the remaining criteria will be renamed and their scope
will be expanded. Those being eliminated are

& debugging facilities,
& support for safe programming,
& real or customized,
& support for target application domain,
& prior experience of incoming students.

Some of the criteria groupings were also altered:

& The elimination of the criteria related to “debugging facilities” and “support for
safe programming” lead to the combination of “Student-Friendly Features” and
“Language Pedagogical Features” into the grouping “Pedagogical Features.”

& The elimination of the criteria that refer to “real or customized” and “support for
target application domain” made it necessary to eliminate the grouping
“Language Design.”

& Since it was the sole member of the group, the elimination of the “prior student
experience” criterion made it necessary to eliminate the “Student Experience”
group as well.

260 Educ Inf Technol (2010) 15:255–275

& The criterion “full-featured language” was relabeled “Feature Set” to make it
applicable to software tools. It was then grouped with “Software Characteristics”
since that is a more logical fit.

& At that point the group labeled “Intent” contained only one criterion, so the
decision was made to combine it with “Paradigm” under the heading “Course
Methodology and Software Paradigm.”

Table 1 Criteria for the selection of a programming language

Software cost

• Reasonable financial cost for setting up the teaching environment

• Availability of student/academic version

Programming language acceptance in academia

• Academic acceptance

• Availability of textbooks

Programming language industry penetration

• Language’s stage in life cycle

• Industry acceptance

• Marketability (regional & national) of graduates

Software characteristics

• System requirements of student/academic/full version

• Operating system dependence

• Open source (versus proprietary)

Student-friendly features

• Easy to use development environment

• Good debugging facilities

Language pedagogical features

• Ease-of-learning basic concepts

• Support for safe programming

• Advanced features for subsequent programming courses

Language intent

• Full-featured language (versus scripting)

• Support of Web development

Language design

• Real or Customized

• Support for target application domain (such as scientific or business)

Language paradigm

• Methodology or Paradigm

• Support for teaching approach (function first, object first or object early)

Language support and required training

• Availability of support

• Training required for instructors and support staff

Student experience

• Anticipated programming experience level for incoming students

Educ Inf Technol (2010) 15:255–275 261261

Note that each of the criterion adaptations is suggested elsewhere in software
selection literature. Programming courses will not be included in the following
discussion since those are covered extensively in Parker et al. (2006a, b).

4.1 Category 1: Software cost

The software cost category includes two criterion, financial cost and availability of
an academic version.

Reasonable financial cost refers to the price to acquire the software tool. This may
involve individual packages or a site license for a network version. Factors to explore
include academic discounts for educational institutions, alliances in which the university
or department can enroll, or the availability of a free, downloadable trial version. For
example, Expression Studio is free to students if their university is part of the Microsoft
Developer NetworkAcademic Alliance. Dreamweaver, on the other hand, is available for
a thirty day trial from Adobe, after which it can be purchased at an educational price of
approximately $200. Software cost is included in the criteria of several software selection
studies, including (Baki and Çakar 2005; Beise 2006; Bosilj-Vuksic et al. 2007; Denton
and Peace 2004; Kao et al. 2000; Min 1992; Rowley 1992; Torchiano et al. 2002).

The availability of an affordable version of the software tool allows students to
install the development environment on their personal machine, making it
convenient for them to work on their assignments even when the computer lab is
not accessible. If a student version is unavailable and the department uses a network-
based version, then students may have to work on assignments in campus labs,
restricted by hours of operation, availability of transportation, etc. If the academic
version has a limited feature set, then the benefit to the students may not be as great,
but this factor should at least be considered. Beise (2006) discusses this criterion
under the heading “accessibility for students.”

4.2 Category 2: Acceptance in academia

This category refers to the degree to which the software tool under consideration has
been embraced by academia.

Academic acceptance refers to the popularity of a software package across academic
institutions. This can be assessed by current use or projected use at other institutions.
This criterion is included in Donham’s (2004) discussion of community opinion.

The availability of text books is affected by many factors. The maturity of the
software tool impacts the availability of textbooks, particularly when the tool is
relatively new. It is often difficult to find a quality textbook for a newly released tool, but
as a tool matures more texts become available. The academic acceptance of a software
tool also plays a large role in the availability of textbooks because a larger potential
market exists for a text that deals with a more widely used tool. Beise (2006) includes
textbook availability under availability of teaching and learning materials.

4.3 Category 3: Industry penetration

This category refers to the degree to which the software tool under consideration has
been embraced by the professional community.

262 Educ Inf Technol (2010) 15:255–275

A software tool’s maturity affects not only text-book availability, as noted above, but
it may also impact the widespread use of a tool in both industry and academia. This has
been variously referred to as pedigree, maturity, lifetime, and product maturity (Bosilj-
Vuksic et al. 2007; Donham 2004; Rowley 1992; Torchiano et al. 2002).

Industry acceptance refers to the market penetration of a particular software tool
in industry, i.e., the use of a tool in business and industry. Also referred to as
industrial relevance, it can be assessed based on current and projected usage, as well
as the number of current and projected job openings that require familiarity with the
tool. In software selection studies industry acceptance falls within the scope of
industry relevance, pedigree, or community opinion (Beise 2006; Bosilj-Vuksic et al.
2007; Donham 2004).

Marketability refers to the employability of graduates at the local, national, and
international levels. Software tool selection is often driven by demand in the
workplace, i.e., what employers actually use. Denton and Peace (2004) refer to this
factor as job market appeal.

4.4 Category 4: Software characteristics

The software characteristics category encompasses various software traits like
system requirements, operating system limitations, the source availability model, and
software feature set.

The system requirements of a software package, whether it is a student, academic, or
full version, include hardware as well as operating system requirements. The amount of
hard disk space needed to install the software, the operating system required, and the
amount of memory to run the software all factor into the decision. In other software
selection studies the system requirements criterion has been referred to as technological
aspects, technology, technical considerations, or hardware requirements (Bednarik et al.
2004; Kao et al. 2000; Rowley 1992; Torchiano et al. 2002)

Operating system dependence refers to the dependence of a tool on a particular
operating system platform. For example, some software tools are dependent on the
Windows operating system, while others are platform independent with environ-
ments available for a variety of operating systems. The software selection literature
incorporates operating system dependence into criteria like technological aspects,
compatibility, technical considerations, and software requirements (Bednarik et al.
2004; Denton and Peace 2004; Min 1992; Rowley 1992; Torchiano et al. 2002).

Open source versus proprietary refers to the entity that controls the evolution of the
software tool. For example, Microsoft is responsible for additions, deletions, or
modifications to SQL Server. On the opposite end of the spectrum, MySQL is an open
source database (in spite of its recent acquisition by Oracle) and can be modified by any
member of the open source community. Donham (2004), Hauge et al. (2009), and
Polančič et al. (2004) focus exclusively on the evaluation of open source solutions.

One software characteristic that should be considered is the feature set. A full
feature set versus limited feature set refers to the fact that some software tools lack
certain features. That may be due to the fact that some software tools are more
capable than others. For example, Microsoft Access does not support stored
procedures or triggers, while those are a feature of SQL Server, Oracle, MySQL, etc.
If employers expect students to know how to create stored procedures and triggers,

Educ Inf Technol (2010) 15:255–275 263263

then the software tool selection process should take that into account and rate Access
poorly for this criterion. In other cases an educational (or evaluation) version of a
software tool with a limited feature set may have been developed especially for
teaching or assessment purposes. For example, some modeling tools like ERwin
offer evaluation versions that limit the number of entities that can be modeled.
Lancor (2008) notes a problem stemming from a limitation on the number of
modules, and Min (1992) lists among her criteria the size and scope of the problem
to be solved by the software.

4.5 Category 5: Pedagogical features

This category considers a language’s learning curve, ease-of-use features associated
with the software tool, advanced features that could support subsequent courses, and
whether the software tool supports collaboration.

Ease of learning concepts refers to the learning curve associated with a software
tool. Bednarik et al. (2004) incorporate this into their usability parameter, while
Beise (2006) calls it “ease of use/learning curve” and Huber and Giuse (1995)
address it in “how easy to use.”

An easy-to-use environment is critical in teaching. This includes the interface
design, that is, the overall look and feel of the tool including how intuitive it is to the
user (Kao et al. 2000). Denton and Peace (2004) extend ease of use to include
uncomplicated software installation, minimal maintenance requirements, easy access
from remote locations, and straightforward administration and use of the software by
both faculty and student perspectives, because supporting the platform can require
extra time and effort on the part of the individual instructor. These considerations are
also addressed by (Anderson 1990; Bednarik et al. 2004; Huber and Giuse 1995;
Min 1992; Rowley 1992; Torchiano et al. 2002).

Advanced features for subsequent courses is critical if multiple courses, such as
Database Systems and Advanced Database Concepts, are included in a computing
curriculum. If this is the case then the candidate tools must offer adequate advanced
features to support an advanced course. Anderson (1990) refers to this attribute as
advanced functions, while Min (1992) refers to it as sophistication.

One criterion that was not included in Parker et al. (2006a, b) is whether a
software tool supports collaboration. This has become more critical in recent years,
especially to employers. Lancor (2008) states that the ability for students to function
effectively on teams to accomplish a common goal is critical. She goes on to point
out that ABET emphasizes teamwork skills through its revised curricula criteria that
includes learning outcomes that embrace the development of effective teamwork
skills (ABET 2008).

4.6 Category 6: Course methodology and software paradigm

This category focuses on how the software will be used in the educational
environment. This includes both the teaching goals and teaching approach that is
preferred, as well as the software paradigm.

If one of the goals of a course or curriculum is to teach web-based development,
the level of support for web development associated with a particular tool must be

264 Educ Inf Technol (2010) 15:255–275

considered. Beise (2006) refers to this as a web development interface. Technology
bundles like LAMP (Linux, Apache, MySQL, PHP) come to mind when considering
this category. And of course software tools like Dreamweaver, Expression Web, etc.,
are intended for the development of web pages and sites.

Support for teaching approach refers to how well a software package supports the
teaching approach preferred by the faculty, e.g., whether the intent is to teach
traditional analysis and design and database approaches or to move toward object-
oriented or agile approaches. This will affect whether the course covers data flow
diagrams (DFDs) and entity-relationship diagrams (ERDs), or go with the Unified
Modeling Language (UML) or use case diagramming tools. Denton and Peace
(2004) refer to this as functionality, explaining that the “software system chosen
must provide the functionality needed to achieve the pedagogical goals of the
course” (p. 404).

This leads to a discussion of software paradigm, which is inextricably linked to
teaching approach. As an example of software paradigm, consider tools for systems
analysis and design or database design. Such tools may support a traditional
approach to design, while others may support the object-oriented paradigm, while
still others may be designed to support agile development techniques. For example, a
course that focuses on agile development techniques may be better served by a
project management tool designed to support agile approaches, like Rally, rather
than a general purpose tool like Microsoft Project. The teaching approach makes it
necessary to select the paradigm that will be the focus of the course, and similarly
the paradigm dictates the teaching approach.

4.7 Category 7: Support and required training

This category looks at the level of and need for documentation, training, and support
for both instructors and students.

Availability of documentation and support takes into account the availability of
support staff, including computer lab staff and/or network administrators, to support
the teaching and administration of a software tool. Beise (2006) notes that some
packages require institutional technical support, especially if installed on a campus
server linked to a campus network and subject to security constraints, which can
limit or prevent access from off-campus, and potentially conflict with the software
configuration. This criterion should also take into account the availability of support
through forums or listservs on the Internet, as well as vendor support. This is broadly
addressed in the literature on software selection in (Anderson 1990; Baki et al. 2005;
Beise 2006; Bosilj-Vuksic et al. 2007; Donham 2004; Huber and Giuse 1995; Kao et
al. 2000; Min 1992; Rowley 1992; Torchiano et al. 2002).

Training includes not only the training required for instructors and support
staff, but also the time needed to learn a software tool and the availability of
qualified instructors to teach a course using that tool. For example, a few years
ago it was common to have IS professors who were familiar with DFDs and
ERDs, but had little or no knowledge of UML and would require training if
UML software tools like Rational Rose were adopted. Anderson (1990), Beise
(2006), Kao et al. (2000), and Min (1992) all mention the need for training
services.

Educ Inf Technol (2010) 15:255–275 265265

Table 2 shows the modifications made to the content of Table 1, resulting in a set
of criteria for the selection of software tools for an IS/IT curriculum.

5 Practical considerations

While the selection of software tools for an IS or IT curriculum is highly subjective,
a thorough set of criteria makes an objective selection process attainable. However,
the process may still vary drastically at each institution due to the differences in
culture, strategy, or even politics. The following steps provide a systematic approach
for a general selection process.

1. Compile a list of criteria. The criteria proposed by this study can be adapted to
fit the needs of most departments or programs.

2. Weight each of the criteria. Ask each evaluator to weight, specific to the
department’s needs, the value of importance for each criterion. If there are

Table 2 Criteria for software tool selection for IS/IT curricula

Software cost

• Reasonable financial cost

• Availability of affordable software version

Acceptance in academia

• Academic acceptance

• Availability of textbooks

Industry penetration

• Maturity

• Industry acceptance

• Marketability of graduates

Software characteristics

• System requirements

• Operating system dependence

• Open source (versus proprietary)

• Feature set

Pedagogical features

• Ease of learning basic concepts

• Easy-to-use development environment

• Advanced features for subsequent courses

• Collaboration support

Course methodology and software paradigm

• Support of Web development

• Support for teaching approach

• Software paradigm

Support and Required Training

• Availability of documentation and support

• Training required for instructors and support staff

266 Educ Inf Technol (2010) 15:255–275

multiple evaluators, either the evaluators can strive to reach a consensus or the
weights assigned by each evaluator can be averaged.

3. Determine a list of candidate tools. The list should be comprised of software
tools suggested by the faculty rather than an exhaustive list of available tools.
Having sub-lists may be desirable so that a subset of candidate tools can be
compared at one time to narrow down the choices, and comparing several
similar tools may also be desirable.

4. Rate the software tool. Each candidate tool should be assigned a rating for each
criterion. Again, with more than one evaluator a consensus should be reached or
average scores could be calculated.

5. Calculate a weighted score. For each candidate tool, a weighted score can be
calculated by adding together the tool score multiplied by the weight assigned to
each criterion. The software tool with the highest weighted score is the optimal
choice based on evaluators’ assessments.

The process is fairly mechanical and can be easily adapted to fit the needs of
individual departments. It may be advisable to begin the selection process with a brief
introduction to the procedure. A software tool selection committee may be formed to
evaluate and adapt the selection criteria and to assign a weight to each criterion for the
department.

Lai et al. (1999) observe that many approaches are available to accommodate the
disparate judgments of group participants in this process:

In a common objective context where all participants share the same objectives,
there are four ways for setting the priorities: consensus; vote or compromise;
geometric mean of the individuals’ judgment; and separate models or players.
Consensus refers to the achievement of consensus of group participants in
constructing the hierarchy and making judgments. If consensus cannot be
obtained, the group may choose to vote or compromise on a judgment. If a
consensus cannot be achieved and the group is unwilling to vote or to compromise,
then a geometric mean (average) of the individuals’ judgments can be calculated. If
a group has significantly different objectives and cannot meet to discuss the
decision, then each group member can make judgment separately, based either on
separate models or players. If it is based on separate models, then each group
member enters their judgment into a separate model, which will then be averaged.
However, if it is based on separate players, then a combined model is set up with
each ‘player’ evaluating those factors in their part of the combined model.

Not every faculty member in the department may have expertise in or even
familiarity with all software tools to be evaluated. One solution is to request that
evaluators download and experiment with an evaluation version if one is available.
Another alternative would be to require each evaluator to state their confidence level
on each software tool evaluated.

5.1 Structured weighting process

Assigning weighing factors to a broad set of criteria is not an easy task. There is a
potential inconsistency because an evaluator may assign a higher value to criterion X

Educ Inf Technol (2010) 15:255–275 267267

than to criterion Y, despite the fact that he or she actually believes that criterion Y is
more important than X. For example, an evaluator may independently assign a five
to “Reasonable Financial Cost” and a seven to “Academic Acceptance,” but if
specifically asked about those two criteria with respect to each other the evaluator
may indicate that “Reasonable Financial Cost” should weigh more than “Academic
Acceptance” in the selection process, inconsistent with the previously assigned
weights. To reduce such inconsistencies, a more formalized and rigorous approach to
the evaluation of selection criteria and scoring of software tools is needed.

Multi-criteria decision analysis (MCDA) can be applied to the software evaluation
process (Jadhav and Sonar 2009). In their literature review of software selection
methodologies, Güngör ŞEN and Baraçli (2006) point out that over half of
methodologies that they examined use multi-criteria decision-making methods to
support the final phase of the selection process. MCDA, and more specifically the
Analytic Hierarchy Process (AHP), is used in the decision making process proposed
by Parker et al. (2006b). Other software selection studies using MCDM or AHP
include (Bosilj-Vuksic et al. 2007; Davis and Williams 1994; Kannan and Vinay
2008; Lai et al. 1999; Min 1992; Ngai and Chan 2005; Teltumbde 2000).

MCDA provides a variety of tools for structured decision making. The types of
decisions for which MCDA is most appropriate are those that involve selecting from

Table 3 Comparison matrix

In
du

st
ry

P

en
et

ra
ti

on

So
ft

w
ar

e
C

ha
ra

ct
er

is
ti

cs

P
ed

ag
og

ic
al

F

ea
tu

re
s

C
ou

rs
e

M
et

ho
do

lo
gy

 &

So
ft

w
ar

e
P

ar
ad

ig
m

Su
pp

or
t

&

R
eq

ui
re

d
T

ra
in

in
g

Software Cost

Acceptance in Academia

Industry Penetration

Software Characteristics

Pedagogical Features

Course Methodology &
Software Paradigm

Support & Required
Training

A
cc

ep
ta

nc
e

in
 A

ca
de

m
ia

268 Educ Inf Technol (2010) 15:255–275

multiple options the single option that most closely meets a set of weighted
objectives. In this case, we seek to select the software tool that most closely supports
course requirements, where those requirements are expressed by the selection criteria
previously defined. AHP is particularly appropriate for the type of analysis required
in this research.

The AHP, developed by Saaty (1980), uses a hierarchy to structure a decision
problem. It decomposes the problem into its component elements, groups the elements
into homogeneous sets, and arranges them hierarchically (Teltumbde 2000). The AHP
uses the hierarchical model to provide a method to assign numerical values to
subjective judgments on the relative importance of each element, and then to
synthesize the judgments to determine which elements have the highest priority.

The method utilizes a series of pairwise comparisons to derive both weights and
rankings of the selection criteria. The application of AHP requires that each criterion
be compared with every other criterion.

AHP requires pairwise comparisons of selection criteria. For N selection criteria
this will require (N2 – N)/2 comparisons. With seven high-order attributes for the
respondents to assess there are only twenty-one pairwise comparisons. This
approach also reduces the possibility of overlapping criteria and provides a
structured approach to assigning weights to the criteria.

The comparison matrix is shown in Table 3. The row-column intersections are
where the pairwise comparisons between criteria are recorded.

The respondent is asked to indicate their degree of preference for one criterion
over the other. Typically the respondent is presented with a scale, such as the one
shown in Table 4.

Table 5 Example weights

Software Cost Acceptance in Academia Industry Penetration

Software cost 1/5 1/3

Acceptance in academia 7

Industry penetration

Table 4 Representative scale

Overwhelmingly more important 9:1

Very strongly more important 7:1

Strongly more important 5:1

Moderately more important 3:1

Equally important 1:1

Moderately less important 1:3 (or 1/3)

Strongly less important 1:5 (or 1/5)

Very strongly less important 1:7 (or 1/7)

Overwhelmingly less important 1:9 (or 1/9)

Educ Inf Technol (2010) 15:255–275 269269

The scale is used for evaluators’ responses in assessing their preference between
each pair of criterion. The responses to these comparisons are then normalized using
matrix algebra, and weights that indicate the relative ranking of the importance of
the selection criterion are derived.

Working row-by-row through the first three high order selection criteria, let us
suppose a respondent has indicated that academic acceptance is strongly more
important (5:1) than software cost, so conversely software cost is strongly less
important (1:5) than academic acceptance. Thus, a 1/5 will be entered in the
intersection of software cost/academic acceptance. Next they assess industry
penetration as being moderately more important (3:1) than software cost, and
conversely software cost as moderately less important (1:3) than industry
penetration, so a 1/3 will be entered in the intersection of software cost/industry
penetration. Finally, they weight academic acceptance as very strongly more
important (7:1) than industry penetration, so a 7 will be entered in the intersection
of academic acceptance and industry penetration. The slightly inconsistent weighting
in the respondent’s scoring is not unusual and can easily be accommodated by the
model. These responses are initially coded in a matrix as shown in Table 5.

Note that when comparing criterion A with B, if B is preferred to A then it is
simply coded using the reciprocal. Therefore we can complete the matrix by filling
in the remaining cells as seen in Table 6.

Next we convert each cell to its decimal value (Table 7).
What remains is to calculate an Eigenvector. This is accomplished by first

squaring the matrix. The squared matrix appears in Table 8.
Next, each row is summed and normalized to yield the final Eigenvector. The

Eigenvector holds the weights representing the relative importance of each selection
criteria. Table 9 demonstrates that each row is first summed, then the row sums are
totaled, and finally the row sums are divided by the total to normalize the values.

In this simple example it is apparent that academic acceptance is associated with
the highest weight at 0.754, so it is the most important selection criterion, followed

Table 7 Example weights as decimal values

Software Cost Acceptance in Academia Industry Penetration

Software cost 1.00 0.20 0.33

Acceptance in academia 5.00 1.00 7.00

Industry penetration 3.00 0.14 1.00

Table 6 Example weights and reciprocals

Software Cost Acceptance in Academia Industry Penetration

Software cost 1 1/5 1/3

Acceptance in academia 5 1 7

Industry penetration 3 1/7 1

270 Educ Inf Technol (2010) 15:255–275

by industry penetration at 0.162, and the least important selection criterion, software
cost, with a weight of 0.084.

5.2 Remaining steps

Recall that five steps were listed for the selection process.

1. Compile a list of criteria.
2. Weight each of the criteria.
3. Determine a list of candidate tools.
4. Rate the software tool.
5. Calculate a weighted score.

At this point we have accounted for steps 1 and 2. As noted, when determining
the list of candidate tools (step 3) faculty should suggest specific tools rather than
attempting to compile an exhaustive list of available tools. This may require
investigation on their part or networking with colleagues at different universities.

Once the list of candidate tools has been aggregated, each of the candidate tools can
be rated (step 4). Each tool should be assigned a rating for each criterion based on how
well it meets or satisfies the criterion and each of its components. Referring again to the
example given above—assessing database packages—if employers have expressed a
preference for graduates with experience creating stored procedures and triggers, then
Oracle and SQL Server would be assigned a high score for Software Characteristics
while Microsoft Access would receive a poor rating for this criterion. This process is
performed for each of the criterion for all of the candidate tools. A tool selection criteria
survey form, like that shown in Table 10, can be used for step 4.

Once all of the candidate tools have been rated for each criterion, the weighted
score can be calculated for each tool by adding together the products of the tool
scores multiplied by the weights assigned to each criterion (step 5). The software

Table 9 Decomposition of matrix into eigenvector

Sum Normalization Results

Software cost 3.00+0.45+2.07 5.52 5.52 / 65.91 0.084

Acceptance in academia 31.00+3.04+15.67 49.71 49.71 / 65.91 0.754

Industry penetration 6.74+0.90+3.04 10.68 10.68 / 65.91 0.162

Total 65.91 1.000

Table 8 Squared matrix

Software Cost Acceptance in Academia Industry Penetration

Software cost 3.00 0.45 2.07

Acceptance in academia 31.00 3.04 15.67

Industry penetration 6.74 0.90 3.04

Educ Inf Technol (2010) 15:255–275 271271

tool with the highest weighted score is the optimal choice based on evaluators’
assessments.

6 Conclusion

In practice, the choice of software tools to support a curriculum often requires a
compromise. The process of appraising any software investment can become a political
process as the decision touches on the diverse interests of many people and groups (Lai
et al. 1999). There are economic, political, and pedagogical factors that must be
considered in the decision making process. Further, software selection is not a well-
defined or structured process. The fact that there are not only multiple decision makers

Table 10 Software tool selection criteria survey form

Criterion Weight (0 to 10)

Software cost

• Reasonable financial cost

• Availability of affordable software version

Acceptance in academia

• Academic acceptance

• Availability of textbooks

Industry penetration

• Maturity

• Industry acceptance

• Marketability of graduates

Software characteristics

• System requirements

• Operating system dependence

• Open source (versus proprietary)

• Feature set

Pedagogical features

• Ease of learning basic concepts

• Easy-to-use development environment

• Advanced features for subsequent courses

• Collaboration support

Course methodology and software paradigm

• Support of Web development

• Support for teaching approach

• Software paradigm

Support and required training

• Availability of documentation and support

• Training required for instructors and support staff

Weighted Score (total):

272 Educ Inf Technol (2010) 15:255–275

but also multiple criteria that must be considered expands decisions from one to several
dimensions, thus increasing the complexity of the selection process (Lai et al. 1999).
Educators must take care that none of the criteria are neglected or sacrificed to more
highly visible concerns.

The objective of this research was to propose a selection process for faculty use
when selecting software tools for use in an IS or IT curriculum. This paper outlines
an extensive set of evaluation criteria and then shows how the criteria can be applied
in a structured manner. This approach provides a means of eliminating much of the
subjectivity in the selection process. The structure and objectivity of this formal
method yields the replicability missing from informal approaches.

Upon receiving feedback regarding this conceptual paper the author will reassess
the proposed process and implement an online evaluation tool to streamline the
weighting process and subsequent calculations. This framework will help decision
makers not only in evaluation and selection of software tools for IS and IT programs,
but also reduce the time and effort required for software selection.

References

ABET, Inc. (2008). Criteria for accrediting computing programs: Effective for evaluations during the
2009-2010 accreditation cycle. ABET Board of Directors. http://www.abet.org/Linked%20Docu
ments-UPDATE/Criteria%20and%20PP/C001%2009-10%20CAC%20Criteria%2012-01-08.pdf.

Ahmed, M. I. (2003). A practical process for reviewing and selecting educational software. Technical
Paper #8 Indiana University. PLATO Learning, Inc. A Practical Process for Reviewing and Selecting
Educational Software.

Anderson, E. E. (1990). Choice models for the evaluation and selection of software packages. Journal of
Management Information Systems, 6(4), 123–138.

Baki, B., & Çakar, C. (2005). Determining the ERP package-selecting criteria. Business Process
Management Journal, 11(1), 75–86.

Bandor, M. (2006). Quantitative methods for software selection and evaluation. Technical Note (CMU/
SEI-2006-TN-026), Carnegie-Mellon University. http://www.sei.cmu.edu/reports/06tn026.pdf.

Bednarik, R., Gerdt, P., Miraftabi, R., & Tukiainen, M. (2004). Development of the TUP model –
Evaluating educational software. Proceedings of the IEEE International Conference on Advanced
Learning Technologies. 699–701.

Beise, C. (2006). Revisiting database resource choice: A framework for DBMS course tool selection.
Proceedings of the Twelfth Americas Conference on Information Systems, Acapulco, Mexico August
4–6, 2139–2144 http://aisel.aisnet.org/amcis2006/266.

Bosilj-Vuksic, V., Ceric, V., & Hlupic, V. (2007). Criteria for the evaluation of business process simulation
tools. Interdisciplinary Journal of Information, Knowledge, and Management, 2, 73–88. http://ijikm.
org/Volume2/IJIKMv2p073-088Bosilj396.pdf

Carney, D. J., & Wallnau, K. C. (1998). A basis for evaluation of commercial software. Information and
Software Technology, 40(14), 851–860.

Davis, L., & Williams, G. (1994). Evaluating and selecting simulation software using the analytic
hierarchy process. Integrated Manufacturing Systems, 5(1), 23–32.

Dean, J. C., & Vigder, M. (2000). COTS software evaluation techniques. Proceedings of the NATO
Information Systems Technology Panel Symposium on Commercial Off-the-Shelf Products in Defence
Applications, Brussels, Belgium, April 3–5.

Denton, J. W., & Peace, A. G. (2004). Selection and use of MySQL in a database management course.
Journal of Information Systems Education, 14(4), 401–407.

Donham, P. (2004). Ten rules for evaluating open source software. Point of view paper, Collaborative
consulting. URL http://www.collaborative.ws/uploads/file/10%20Rules%20for%20Open%20Source%
20Software.pdf.

Filho, A., Cavalcante, C. A. V., & da Costa, A. P. (2005). Multicriteria decision making on selection of decision
analysis software. Journal of Academy of Business and Economics. 5 (3), 11–16. http://www.
thefreelibrary.com/Multicriteria+decision+making+on+selection+of+decision+analysis...-a0149213906

Educ Inf Technol (2010) 15:255–275 273273

http://www.abet.org/Linked%20Documents-UPDATE/Criteria%20and%20PP/C001%2009-10%20CAC%20Criteria%2012-01-08.pdf
http://www.abet.org/Linked%20Documents-UPDATE/Criteria%20and%20PP/C001%2009-10%20CAC%20Criteria%2012-01-08.pdf
http://www.sei.cmu.edu/reports/06tn026.pdf
http://aisel.aisnet.org/amcis2006/266
http://ijikm.org/Volume2/IJIKMv2p073-088Bosilj396.pdf
http://ijikm.org/Volume2/IJIKMv2p073-088Bosilj396.pdf
http://www.collaborative.ws/uploads/file/10%20Rules%20for%20Open%20Source%20Software.pdf
http://www.collaborative.ws/uploads/file/10%20Rules%20for%20Open%20Source%20Software.pdf
http://www.thefreelibrary.com/Multicriteria+decision+making+on+selection+of+decision+analysis...-a0149213906
http://www.thefreelibrary.com/Multicriteria+decision+making+on+selection+of+decision+analysis...-a0149213906

Franch, X., & Carvallo, J. P. (2003). Using quality models in software package selection. IEEE Software,
20(1), 34–41.

Fritz, C. A., & Carter, B. D. (1994). A classification and summary of software evaluation and selection
methodologies. Computer Science Technical Report No.940823, Dept of Computer Science, Mississippi
State University. http://www.google.com/url?sa=t&source=web&ct=res&cd=1&ved=0CAYQF
jAA&url=http%3A%2F%2Fciteseer.ist.psu.edu%2F25945.html&ei=JnCDS57rBY6YsgPbv_jjDw&us
g=AFQjCNG2xZ_nUa5N08HLjwUNyMZOr1ERtg

Gerdt, P., Miraftabi, R., & Tukiainen, M. (2002). Evaluating educational software environments.
Proceedings of the International Conference on Computers in Education, 675–676.

Güngör ŞEN, C., & Baraçli, H. (2006). A brief literature review of enterprise software evaluation and
selection methodologies: a comparison in the context of decision-making methods. Proceedings of the
5th International Symposium on Intelligent Manufacturing Systems, 29–31 May, pp. 874–883.

Hauge, O., Osterlie, T., Sorensen, C. F., & Gerea, M. (2009). An empirical study on selection of open
source software – Preliminary results. Emerging Trends in Free/Libre/Open Source Software Research
and Development, ICSE Workshop, Vancouver, Canada, May 18, 42-47.

Hosie, P., Schibeci, R., & Backhaus, A. (2005). A framework and checklists for evaluating online learning
in higher education. Assessment & Evaluation in Higher Education, 30(5), 539–553.

Huber, J. T., & Giuse, N. B. (1995). Educational software evaluation process. Journal of the American
Medical Informatics Association, 2(5), 295–296.

Jadhav, A. S., & Sonar, S. J. (2009). Evaluating and selecting software packages: a review. Information
and Software Technology, 51(3), 555–563.

Kannan, G., & Vinay, V. P. (2008). Multi-criteria decision making for the selection of CAD/CAM system.
International Journal on Interactive Design and Manufacturing, 2(3), 151–159.

Kao, D., Tousignant, W., & Wiebe, N. (2000). A paradigm for selecting an institutional software.
Proceedings of the Information Systems Education Conference 2000, (ISECON), Philadelphia,
November 9–12. http://proc.isecon.org/2000/207/ISECON.2000.Kao.pdf.

Kontio, J. (1996). A Case study in applying a systematic method for COTS selection. Proceedings of 18th
International Conference on Software Engineering, pp. 201–209.

Kontio, J., Chen, S. F., & Limperos, K. (1995). A COTS selection method and experiences of its use.
Proceedings of the 20th Annual Software Engineering Workshop, Maryland.

Lai, V. S., Trueblood, R. P., & Wong, B. K. (1999). Software selection: a case study of the application of
the analytical hierarchical process to the selection of a multimedia authoring system. Information &
Management, 36(4), 221–232.

Lancor, L. (2008). Collaboration tools in a one-semester software engineering course: What worked?
What didn’t? Journal of Computing Sciences in Colleges, 23(5), 160–168.

Lê, Q., & Lê, T. (2007). Evaluation of educational software: Theory into practice. In J. Sigafoos & V.
Green (Eds.), Technology and teaching (pp. 115–124). New York: Nova Science Publishers.

Lin, H., Lai, A., Ullrich, R., Kuca, M., McCllelland, K., Shaffer-Gant, J., et al. (2006). COTS software
selection process. Proceedings of the Sixth International IEEE Conference on Commercial-off-the-
Shelf (COTS)-Based Software Systems, 114–122.

Mannila, L., & de Raadt, M. (2006). An objective comparison of languages for teaching introductory
programming. Proceedings of the 6th Baltic Sea Conference on Computing Education Research,
32–37.

McDougall, A., & Squires, D. (1995). A critical examination of the checklist approach in software
selection. Journal of Educational Computing Research, 12(3), 263–274.

Min, H. (1992). Selection of software: the analytic hierarchy process. International Journal of Physical
Distribution & Logistics Management, 22(1), 42–52.

Ngai, E. W. T., & Chan, E. W. C. (2005). Evaluation of knowledge management tools using AHP. Expert
Systems with Applications, 29(4), 889–899.

Nikoukaran, J., Hlupic, V., & Paul, R. J. (1998). Criteria for simulation software evaluation. Proceedings
of the I998 Winter Simulation Conference, Washington, DC, 399–406.

Obeidat, M. A. (2006). Evaluation of new software technology: an empirical study. International
Management Review, 2(3), 76–71.

Parker, K. R., Chao, J. T., Ottaway, T. A., & Chang, J. (2006). A formal language selection process for
introductory programming courses. Journal of Information Technology Education, 5, 133–151.

Parker, K. R., Ottaway, T. A., & Chao, J. T. (2006). Criteria for the selection of a programming language
for introductory courses. International Journal of Knowledge and Learning, 2(1/2), 119–139.

Plaza, I., Marcuello, J. J., Igual, R., & Arcega, F. (2009). Proposal of a quality model for educational
software. EAEEIE Annual Conference, 1–6.

274 Educ Inf Technol (2010) 15:255–275

http://www.google.com/url?sa=t&source=web&ct=res&cd=1&ved=0CAYQFjAA&url=http%3A%2F%2Fciteseer.ist.psu.edu%2F25945.html&ei=JnCDS57rBY6YsgPbv_jjDw&usg=AFQjCNG2xZ_nUa5N08HLjwUNyMZOr1ERtg
http://www.google.com/url?sa=t&source=web&ct=res&cd=1&ved=0CAYQFjAA&url=http%3A%2F%2Fciteseer.ist.psu.edu%2F25945.html&ei=JnCDS57rBY6YsgPbv_jjDw&usg=AFQjCNG2xZ_nUa5N08HLjwUNyMZOr1ERtg
http://www.google.com/url?sa=t&source=web&ct=res&cd=1&ved=0CAYQFjAA&url=http%3A%2F%2Fciteseer.ist.psu.edu%2F25945.html&ei=JnCDS57rBY6YsgPbv_jjDw&usg=AFQjCNG2xZ_nUa5N08HLjwUNyMZOr1ERtg
http://proc.isecon.org/2000/207/ISECON.2000.Kao.pdf

Polančič, G., Horvat, R. V., & Rozman, T. (2004). Comparative assessment of open source software using
easy accessible data. 26th International Conference on Information Technology Interfaces, June 7–10,
2004, Cavtat, Croatia.

Rowley, J. E. (1992). Evaluation of software. Translating and the Computer, 14, 117–126.
Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.
Squires, D., & McDougall, A. (1994). Choosing and using educational software: a teachers’ guide.

Philadelphia: RoutledgeFalmer, Taylor & Francis.
Squires, D., & McDougall, A. (1996). Software evaluation: a situated approach. Journal of Computer

Assisted Learning, 12(3), 146–161.
Squires, D., & Preece, J. J. (1996). Usability and learning: evaluating the potential of educational software.

Computers in Education, 27(1), 15–22.
Squires, D., & Preece, J. J. (1999). Predicting quality in educational software: evaluating for learning,

usability and the synergy between them. Interacting with Computers, 11 (5), 467–483. http://www.
ifsm.umbc.edu/communities/Heur2.html.

Susser, B. (2001). A defense of checklists for courseware evaluation. ReCALL, 13(2), 261–276.
Teltumbde, A. (2000). A framework for evaluating ERP projects. International Journal of Production

Research, 38(17), 4507–4520.
Tergan, S. O. (1998). Checklists for the evaluation of educational software: critical review and prospects.

Innovations in Education and Training International, 35(1), 9–20.
Torchiano, M., Jaccheri, L., Sørensens, C.-F., & Wang, A. I. (2002). COTS products characterization.

Proceedings of the 14th International Conference on Software Engineering and Knowledge
Engineering, Ischia, Italy, July 15–19, 335–338.

van Staaden, P. & Lubbe, S. (2006). A case study on the selection and evaluation of software for an
internet organisation. The Electronic Journal of Business Research Methods, (4) 1, 57–66, available
online at http://www.ejbrm.com/vol4/v4-i1/Van_Staaden_Lubbe.pdf.

Voogt, J. (1990). Courseware Evaluation by Teachers: An Implementation Perspective. Computers in
Education, 14 (4), 299–307. http://doc.utwente.nl/68005/1/Voogt90courseware.pdf.

Educ Inf Technol (2010) 15:255–275 275275

http://www.ifsm.umbc.edu/communities/Heur2.html
http://www.ifsm.umbc.edu/communities/Heur2.html
http://www.ejbrm.com/vol4/v4-i1/Van_Staaden_Lubbe.pdf
http://doc.utwente.nl/68005/1/Voogt90courseware.pdf

	Selecting software tools for IS/IT curricula
	Abstract
	Introduction
	Related work
	Software tool selection for higher education
	Software selection for non-educational entities
	Educational software selection
	Programming language selection

	An overview of the programming language selection approach
	Adaptations necessary to assess software tools
	Category 1: Software cost
	Category 2: Acceptance in academia
	Category 3: Industry penetration
	Category 4: Software characteristics
	Category 5: Pedagogical features
	Category 6: Course methodology and software paradigm
	Category 7: Support and required training

	Practical considerations
	Structured weighting process
	Remaining steps

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

