
Separation of syntax and problem solving in
Introductory Computer Programming

John M. Edwards∗, Erika K. Fulton†, Jonathan D. Holmes∗, Joseph L. Valentin∗, David V. Beard∗ and Kevin R. Parker∗
∗Department of Informatics and Computer Science †Department of Psychology

Idaho State University, Pocatello, Idaho 83209
Email: {edwajohn, fulterik, holmjona, valejose, beard, parkerkr}@isu.edu

Abstract—In this research work in progress paper, we discuss
the possible benefits of separating syntax practice from problem-
solving learning in an Introductory Computer Programming
course. We propose a curriculum and associated development
tool called Phanon that teach the rudiments of programming
language through exercises done online outside of class. Having
students complete exercises before class frees up classroom time
and instructor face time for the higher-order learning tasks of
problem decomposition and solving. We report results from a
pilot study that are consistent with our hypothesis that these
techniques result in improved student outcomes and attitudes
and we discuss a future follow-up study.

Index Terms—computer science, programming, education

I. INTRODUCTION

Introductory Computer Programming (CS1), a course that
teaches students to solve problems using a computer pro-
gramming language, generally has low pass-rates (typically
around 68% [2], [34]) and a large amount of research has
been done to improve student outcomes. A major, identified
barrier to student success in CS1 courses is language syntax
[30]. Students tend to become frustrated by the mechanics
of computer programming limiting their ability to master
the problem-solving techniques that CS1 courses generally
identify as the primary targets. Block-based languages such as
Scratch [25] and Alice [6] have become popular in recent years
as they remove syntax entirely from the language, enabling
direct solution design. A study showed improved outcomes
and attitudes in using a block-based approach [35], however,
attitudes and confidence returned to levels of the control group
after all students transitioned to a text-based language [36].

In our work, we explore pedagogy that promotes mastery
of programming language syntax before attempting to solve
problems using programming. We make the claim that lan-
guage syntax and mechanics learning lies at the lower levels
of Bloom’s Taxonomy (knowledge, comprehension, and appli-
cation) while problem solving using language mechanics has
place in higher levels (analysis and synthesis). We investigate
whether repetition to gain fluency in language syntax leads to
more effective learning in problem solving as well as improved
student attitudes. We also investigate the effectiveness of
student-regulated active learning in the classroom to learn
problem solving. We have developed a software tool called
Phanon that supports our pedagogy and curriculum and have
used it in a pilot study involving two sections of CS1.

We discuss related work in separating syntax from problem
solving as well as pair programming and exercise-based learn-
ing in section II. Section III discusses our curriculum design
and study design. We report our findings in section IV. We
anticipate that the success of our investigations could lead to a
radically new course structure with implications in both higher
education and high school computer science instruction, which
we discuss in section V.

II. RELATED WORK

For over 40 years computer scientists and psychologists
have studied how novice programmers taking a CS1 class
have learned how to code [16], [17], [27]. CS1 is a difficult
class with a typical pass rate of only 68% [2], [34] and even
students who achieve a good grade often leave with inadequate
understanding of the course content [18]. This is due to the fact
that very often good grades are achieved through memorization
without sufficiently analyzing a problem before attempting to
solve it [9], [38]. Inadequate metacognition is another reason
Computer Science students underachieve [24], [33].

A. Syntax before problem solving
Syntax has been identified as an “extraneous cognitive load”

[14], [15] and “significant barrier” [12], [30] to the more
important objective of creative problem solving. The ideal of
a CS1 education would be to achieve the mechanics learning
quickly and focus primarily on problem solving [4], [7], [13],
[28]. As Oliver and Dobele [22] argued, students begin the
learning process at lower levels of Bloom’s Taxonomy [3]
before reaching later ones that require more abstract thinking
[37]. As Mayer puts it, syntax is “learning to program” and
problem solving is “learning to think” [17].

B. Pair programming
Despite their popularity [34], traditional, large-class lectures

have been shown to be inferior to other methods [10], [26],
[29] such as consistent assessment [11], [32], collaborative
learning [1], [39], and problem-based learning [8]. Collabora-
tive problem solving has been shown to be more effective than
traditional lectures, especially in motivating students [26]. Pair
programming is one implementation of collaborative learning
that is specific to computer programming education and has
been shown to have beneficial effects on student learning [5],
[19]–[21].
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C. Exercise-based learning

A number of different curricula and auxiliary websites
have been appearing in recent years that offer programming
exercises. CodingBat [23] provides online exercises in Python
and Java and is often used as a supplement in CS0 and
CS1 courses. CodeKata [31] is similar, but the exercises
are designed more for computational thinking and take 30-
60 minutes each. Various textbook publishers include online
exercises to accompany their textbooks. These exercises are
usually similar to CodeKata in that they exercise computa-
tional thinking. We know of no curriculum or pedagogy in
computer programming that uses exercises in the manner we
propose, that is, large numbers of short exercises with the ex-
press purpose of giving students familiarity with and mastery
of programming language fundamentals and not necessarily
problem-solving strategies.

III. METHODS

A. Curriculum design

The central piece of our curriculum is mechanics exercises.
The exercises teach the student language syntax, or mechanics,
through example. Two other complementary pedagogical de-
vices we are exploring are smaller, higher-frequency problem-
solving projects, approximately one per day of classroom
instruction, and active learning through pair programming.

Exercises are designed to be a tool to teach concepts that
are at low levels of Bloom’s taxonomy, primarily mechanics
and syntax for a specific language. This is inspired by Linn’s
suggestion that syntax learning be a separate objective from
solving programming problems [13]. Exercises are adminis-
tered via a web-based tool and are progressive in that exercise
ei must be completed before attempting ei+1. Little instruction
is given, relying instead on repeated code reproduction and
synthesis with progressively reduced helps per exercise. At the
beginning of the course almost no reasoning power is required
for the exercises. As the course progresses the required mental
effort increases, but never to the level of program design. An
example exercise early in learning Python iteration is:

Instructions: Print 0 through 3 by replacing xxx with
a range call.

f o r i in xxx :
p r i n t ( i )

A later exercise in the same set is:

Instructions: Write a for loop that prints all even
numbers from 0 to 20.

# add code here

The student’s solution is graded automatically using a set of
hidden test procedures. Each exercise is designed to take 5-60
seconds with no more than 60 exercises in a given session.
The student is presented with a congratulatory green banner
after completing each exercise. The exercise code window has

copy/paste disabled, so the student is forced to key in all
solution code.

While in traditional CS1 offerings a student may write
20 loops over the course of a semester, students using our
approach may write 40 in a single day, and many hundreds
over the course of the semester. The reasoning for exercises
is drawn from forms of art that require repetition to master
fundamentals. For example, a pianist must learn and practice
certain exercises and scales in order to achieve technical
proficiency. 1 We claim that computer programming is no
different. While we agree that problem solving is, and should
be, the primary objective of the course, and that program
design is best practiced through projects, spending time to
master language mechanics can benefit the student in two
specific ways. The first is that problem solving can be done
without the hobbling experience of syntax errors. We propose
that mastering language elements through exercises will result
in reduced time and frustration in completing problem-solving
projects. The second benefit of exercises is that students are
given a large number of successes, one per exercise, and so
the student comes to the problem-solving phase of learning
with high confidence.

Programming projects are assigned to the students each
class day. A student may not start a project unless they have
completed the mechanics exercises for the day. We expect
that students will be able to focus more effectively on the
problem-solving skills having already obtained some mastery
of the language mechanics. At the beginning of class each
student who has completed the exercises is assigned a random
partner with whom to pair program the assigned project. No
verbal instruction is given to the class on how to complete
the project, but the written instructions often include some
guidance. While the students work together the classroom
instructor answers questions individually as needed. If the
project is not completed by the end of class students can either
finish on their own or meet again as pairs outside of class to
finish together. A student may not work with anyone other
than their assigned partner for a given project. One project
per week is done individually. Projects are an even mix of
turtle graphics-based problems and text-only problems. Typical
projects include drawing geometric shapes and computing
statistical measures on numbers input by the user.

B. Study design

We conducted a small-scale pilot study that makes no
causative claims, but rather tests for statistically detectable
effects to justify a larger scale study the following term. We
used two sections of CS1 at our university as our testbed.
Students were given the choice to participate in the study:
17 of 18 students in the test section chose to participate and
18 of 25 in the control section participated. All programming

1Indeed, the name of our software tool Phanon is based on the piano
metaphor. Virtually all accomplished pianists are familiar with a book of
exercises entitled “The Virtuoso Pianist” by Charles-Louis Hanon. The name
Phanon is a portmanteau of the words Programming Hanon. We have also
given the Phanon software the subtitle “The Virtuoso Programmer”.



was done using our Phanon web-based software in Python.
Common elements between the two courses included a weekly
programming project and exams. Tutoring hours were identical
for both sections.

The test section was conducted as follows: before each class
period a student logs onto the Phanon website and is presented
a series of 20-60 mechanics exercises on a language concept
such as iteration or conditionals. The student steps through
the exercises, advancing to the next only after completing
the current one. The test section class was held MWF. On
Monday, classtime was used for individual work on the weekly
project. Students could finish the project outside of class if
they were unable to complete it during class. The project
was due Wednesday before class. At the beginning of class
each Wednesday and Friday, students were randomly paired
and then each pair worked together on a single laptop on
an additional programming project. So students in the test
section completed, on average, three programming projects per
week in addition to the exercises. No classroom instruction
was given beyond individual help. The instructor for the test
section was a Junior-level undergraduate student majoring in
Computer Science with no previous teaching experience.

The control section was taught in a more traditional manner.
It was also taught MWF and classtime was used for lecture.
The weekly project was identical to the one given in the test
section and was also due on Wednesdays. Projects were done
individually outside of classtime. (Note that the weekly project
for the test section was started in class with the instructor
available to answer questions and completed out of class
if necessary.) The instructor for the control section was an
experienced faculty instructor.

Exams were administered through Phanon and were iden-
tical between the two sections.

After each set of exercises the student was given a survey
asking perceived value and metacognitive questions. Similar
questions were also asked pre- and post-project. Project atti-
tudinal survey results are reported in section IV and metacog-
nitive results will be reported in a separate paper.

We fitted the Phanon software with a measurement instru-
ment that tracks the usage time of students. We measured how
long each student took in completing exercises and projects.
Measuring exercises was straightforward, but we discovered
early in the term that some students were developing some
of their project code outside of the Phanon development
environment and then pasting the code into Phanon. (Note that
while exercises had copy/paste disabled, projects did not so
that students would be free to move their code around during
refactoring.) For this reason we use the median project time
for students in our results reporting.

C. Assessment

We assess in two broad categories: competence and per-
ceived value. Competence and perceived value assist in deter-
mining whether our efforts will lead to a more proficient and
larger workforce, respectively.

Competence is the measure of computer programming pro-
ficiency and is measured by exam scores, project scores, and
time taken to complete tasks.

Perceived value measures help us to understand and refine
comfort level with programming and increased interest in
the subject matter. These measures are in three forms: the
first is in the form of an attitudinal survey, where at the
conclusion of a project the software prompts the student to
answer four questions regarding their experience. Two other
perceived value measures are pre- and post-course attitudinal
surveys and our institution’s post-course student evaluations.
Post-course surveys and evaluations were not available by the
deadline for this paper.

IV. STUDY RESULTS

We measured students’ perceived value, project time, project
scores, total time spent on the course, and exam results.
All results of the study were consistent with the hypothesis
that the test section would yield improved student outcomes,
with the exception of project and exam scores, which had no
detectable difference between the sections. All results reported
here include all students who elected to participate in the
study with no control for student background. We analyzed
results after grouping students by math background and found
no detectable difference from results reported here, so, for
simplicity of exposition, we omit student ability interactions,
which we expect will be an important consideration in our
follow-up study. We report only results up to the midterm
exam; as explained later in this section, exercises were made
available to the control group for optional use after the
midterm.

Figure 1 shows box plots of project scores and median time
spent on projects per user. Only the weekly projects, which
were individual projects in both sections, were compared.
Project scores appear comparable. The interesting statistic,
however, is time spent on projects. In order to get similar
scores, the median test student spent 43% less time than
the median control student, a statistically detectable effect
(p = 0.028). We note that while the control students are
spending more time on the projects, that doesn’t necessarily
mean that they are spending more time on problem solving as
the control students may be spending more time fixing syntax
bugs.

Figure 2 shows student responses to post-project questions
related to their experience doing the project. Both questions
yield statistically detectable differences between the two sec-
tions (challenge p = 0.0013 and frustration p = 0.0181).
This result, coupled with the reduced amount of time spent
on projects, indicate that test students had a more pleasing
experience doing the projects than those in the control section.

Figure 3a shows the midterm exam score results, where
the t-test yields no statistically detectable difference. The
midterm exam is structured like the exercises, with self-
grading questions, except that exam questions require higher-
order problem-solving skills and program design than ex-
ercises. An example question is to ask the student to find
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Fig. 1: (a) Median project score for each user in the two
sections. (a) Amount of time spent on the project with the
median score.
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Fig. 2: Student responses to post-project questions about their
experience. (a) Response to the question “how challenging
was this project for you?” (b) Response to the question “how
frustrating was this project for you?”

the average age among a list of student records. So it was
interesting and unexpected to see no detectable difference in
scores when not only do test students have the benefit of
exercises, but also that their project development time is so
much lower. We plan to investigate this result further in our
follow-up study.

Figure 3b reports the total amount of time students spent
on the course. For control students it included time spent
completing projects and in-class lecture time. For test students
this included time spent completing projects and exercises.
The median test student spent 18% more time on the course
than the median control student. For perspective, consider
that the test student does daily exercises and three projects
per week, compared to the control student’s lecture time and
single weekly project. If project time is considered a primary
outcome, then 18% more time spent in the class in order to
save 43% of the time on projects may be an attractive option.
Further, control students are spending only 23 minutes outside
of class per 50 minutes in class while test students spend only
37 minutes, which are both well below our target of two hours
outside of class per hour in class.

While final course evaluations were not available by the
deadline for this paper, we have various pieces of informal
feedback from students. After the midterm exam multiple
students in the control section asked for the option to do
exercises after hearing about them from the students in the test
section. This request was granted and exercises were provided
as an optional study help to control students (all results in this
paper were collected before this change was made). A student
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Fig. 3: (a) Midterm exam scores. (b) Total amount of time
spent on the course.

in the control section later said in an email to the instructor,
“I could have used the exercises from the beginning....I really
want to learn and realize if I had these exercises sooner with
more usable information that I could take the ’puzzle pieces’
and put it together I might be feeling exhilarated rather than
discouraged.” This anecdotal evidence suggests that exercises
may play an explanatory role in the attitudinal and learning
outcome improvements measured in our pilot study.

V. CONCLUSIONS AND DISCUSSION

While no causative conclusions can be drawn from our
quantitative results because of potential confounding factors
(e.g. instructor, time of day, student background, etc), we
hypothesize that the improved outcomes measured in this study
are positively impacted by the presence of exercises and pair
programming. As such, studies we are now pursuing focus on
exploring exercises vs. lecture and various combinations that
include pair programming. We also expect that the greater
statistical power in our upcoming studies will elucidate the
effect of exercises on test scores.

Our proposed educational framework carries with it various
challenges, especially in the context of higher education. A
recognized issue of pair programming and other active learning
approaches is that active learning is easiest in small class-
rooms, and with burgeoning enrollments, many institutions
rely on large lecture halls to cut costs. An additional issue
is that instructors are often wary of approaches that move the
instructor into an enabler and mentor role.

If empirical results of our future, larger study are positive
then our approach has multiple important implications. The
first is a more effective undergraduate CS1 offering with
improved student engagement, metacognition and mastery
of the material. Reduced student frustration may also lead
to increased retention. Because of the exercises and pair-
programming, the in-class instructor takes a lesser role and
requires less training. Thus, burgeoning CS1 enrollments can
more easily be handled by employing teaching assistants
for daily classroom instruction. Possibly more importantly,
underfunded high schools in rural and urban school districts
with insufficient budget for computer science faculty can be
serviced with a computer science curriculum and software that
can be deployed with little monetary investment compared to
expensive professional development initiatives.
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[26] L. M. Serrano-Cámara, M. Paredes-Velasco, C.-M. Alcover, and J. Á.
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