

A Generic Life-Cycle Cost
Model for an Embedded
Controller
by Kevin R. Parker

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Computer Science
at Texas Tech University

©1991, Kevin R. Parker

December 1991

 ii

 CONTENTS

ABSTRACT... iii

FIGURES ... iv

CHAPTER

I. INTRODUCTION .. 1

II. MODEL DEVELOPMENT .. 6

III. COST DETERMINATION .. 18

IV. VALIDATION AND USES .. 30

V. EVALUATION PHASE ... 37

VI. CONCLUSIONS .. 80

REFERENCES ... 82

APPENDIX ... 85

 iii

ABSTRACT

The need for a generic life cycle cost model surfaced during the course of research work

which was being conducted by the Department of Computer Science at Texas Tech

University for FSI International, Inc. The purpose of the research was to develop a

requirements specification for a Module Level Controller, which controls "all operations of

the semiconductor processing equipment" [FSII90, 2]. A conference involving research

staff from the Department of Computer Science and an FSI management team revealed that

no accurate means of estimating the cost of a hardware/software project from its inception

to its completion was being utilized by FSI. Costs associated with activities such as

research, design, testing, and support were viewed separately and addressed at various

stages in the system life cycle, not viewed on an integrated basis [BLAN90]. Furthermore,

preliminary investigation by the staff at Texas Tech concluded that none of the available

life cycle costing models accurately reflected the life cycle of an embedded controller

project conducted by FSI.

 iv

FIGURES

1.1. Total cost visibility .. 3

2.1. Overview of Life Cycle Cost Model ... 11

2.2. Detailed view of the R&D Branch of the Life Cycle Cost Model. .. 12

2.3. Detailed view of the Production Branch of the Life Cycle Cost Model. 14

2.4. Detailed view of the Maintenance and Support Branch of the Life Cycle Cost Model.... 16

2.5. Detailed view of the Retirement and Disposal Branch of the Life Cycle Cost Model 17

3.1. Design Parameters. .. 24

3.2. Production Parameters. ... 25

3.3. Maintenance and Disposal Parameters. .. 26

3.4. Product Attributes. ... 27

3.5. Computer Attributes .. 28

3.6. Personnel Attributes .. 28

3.7. Project Attributes .. 29

4.1. Components of Cost Effectiveness ... 31

4.2. The Basic Evaluation Process .. 33

4.3. Life Cycle Cost Analysis Breakdown ... 34

4.4. Sample Analysis Checklist ... 36

5.1. SOFTCOST Output--FSI Data .. 54

5.2. SOFTCOST Pert Chart. ... 57

5.3. SOFTCOST Gantt Chart ... 60

5.4. SOFTCOST Output--Biased Data. .. 66

5.5. FSI parameters applied to SOFTCOST with varying lines of code. ... 69

5.6. BYL Cost Driver Report .. 70

 v

5.7. BYL Maintenance Report ... 71

5.8. Phase Distribution Report ... 72

5.9. BYL Life-Cycle Report ... 73

5.10. Aggregate Activity Report ... 75

5.11. BYL Cash Flow Report .. 76

5.12. BYL Function Point Report ... 77

5.13. LCCC Cost Summary Report ... 78

5.14. LCCC Cost Category Report .. 79

 1

CHAPTER I: INTRODUCTION

 Life cycle costing is defined as "a method of calculating the total cost of ownership

over the life span of the asset" [BROW85, 1]. A life cycle is a series of phases used to

coordinate and control the development, production, maintenance, and retirement of a

system. Each phase consists of both a set of activities to accomplish the goals of the phase,

and the associated products resulting from those activities [NASA89]. The life cycle cost of

a system is determined by identifying the functions that constitute each phase of the life

cycle, determining the cost of those functions, applying those costs on a year-to-year basis,

and ultimately accumulating those costs over the entire life span of the system [BLAN78].

Life cycle cost models can be used as a tool in the "systematic analytical process of

evaluating various alternative courses of action with the objective of choosing the best way

to employ scarce resources" [BLAN90, 505].

 The goal of this research project was the development of a generic life cycle cost

model for an embedded controller. The model was structured to represent the life cycle of

FSI's embedded controller projects. The steps which were taken to accomplish this goal

were:

(1) the development of a cost breakdown structure to serve as a basis for the proposed

life cycle cost model;

(2) the investigation of existing life cycle cost tools to evaluate their ability to calculate

either the overall life cycle cost or the costs associated with a subsystem of the

proposed model.

One of the initial steps in developing an appropriate life cycle cost model was the

design of a cost breakdown structure (CBS). A cost breakdown structure provides a

framework for defining life cycle costs and is the basic mechanism used for cost allocation.

The CBS reflects the many different types of activities which make up the life cycle of a

system, and life cycle costing is a compilation of a variety of cost factors resulting from the

categories which make up the CBS. The cost breakdown structure developed during the

course of this research includes all functions which are performed during the course of an

embedded controller project such as those undertaken by FSI. In order to provide

 2

clarification, a table accompanies the CBS to supply a description of each cost category

included in the CBS, as well as the quantitative relationships used to determine costs.

After establishing a realistic cost breakdown structure, various life cycle cost models

were investigated. In many applications, the life cycle cost model lends itself to being

partitioned into a series of subsystems. For example, the life cycle of the application under

consideration involves alternative approaches, and thus the analysis was made more

manageable through the use of individual models for analysis at the subsystem or

alternative level. In addition, some of the existing life cycle cost tools appeared to be

suitable for calculating the overall life cycle cost or the costs of a single subsystem. If such a

tool could be utilized as is or with slight modifications, it would have been more feasible to

adopt that tool rather than to develop a new tool [BLAN78].

 The scope of the tool selection process was restricted to those tools which lend

themselves to the life cycle costing of an embedded controller. This eliminated special

purpose tools such as those intended for avionics or other specific applications. In

addition, the cost breakdown structure devised in the earlier phase of this project provided

a guide for tool selection, leading to the selection of those tools which offered a way of

modeling a particular subsystem. The subsystems for which tools were available were the

software subsystem and the hardware subsystem.

 The list of tools selected for evaluation included:

(a) Life-Cycle Cost Calculator (LCCC) developed at Virginia Polytechnic Institute,

(b) Software Cost Model (SOFTCOST) developed by the National Aeronautics and

Space Administration,

(c) Before You Leap (BYL) developed by the Gordon Group,

(d) Life Cycle Cost Model, Version H (LCCH) developed at Wright-Patterson Air Force

Base, and

(e) Programmed Review of Information for Costing and Estimation--Hardware (PRICE

"H") developed by RCA.

 The basis for the evaluation criteria was the degree of a tool's applicability to a

subsystem. Any tool not directly applicable to either the hardware or software subsystem

was not considered. Tools which could not be acquired could not be thoroughly evaluated

 3

and thus were dropped from consideration. The focus of the research was the selection of

the tools with the greatest applicability and the determination of what modifications were

necessary so that they more accurately reflected actual costs generated by a sample FSI

project.

 Need for Life Cycle Costing

 The need for life cycle costing exists because too often, when budgeting, contracting,

or evaluating a system, only the procurement costs or the design and production costs are

considered. Total system cost is not apparent and hidden costs, such as those costs

associated with maintenance and distribution, inflate that total cost well beyond the

obvious costs. The total life cycle cost encompasses all present and future costs associated

with research and development, production, installation and checkout, maintenance, and

ultimate system phase-out [BLAN81].

 An analogy can be drawn between the cost visibility problem and an iceberg, as

shown in Figure 1.1 [BLAN90]. Life cycle costing models provide a tool to address not only

the acquisition costs, but the underlying costs as well.

 Figure 1.1. Total Cost Visibility. [Adapted from BLAN90.]

 Life cycle cost analysis provides multiple benefits in addition to the obvious

advantage of providing a more accurate view of the overall cost of a system. Life cycle cost

 4

analysis can be used in the evaluation of alternative system design configurations such as

hardware versus software approaches, component selection and standardization,

reliability versus maintainability, levels of repair versus discard decisions, diagnostic

routines, built-in test versus external test, and so forth. It can be used in the evaluation of

alternative system maintenance concepts, logistic support policies, and procurement

sources [BLAN90]. It is anticipated that its major attraction to a corporation such as FSI

will be its usefulness in evaluating alternative sources for both hardware and software

products, i.e., assisting in the decision of whether to design and produce various

components in-house or to procure those components from a vendor.

 Life cycle costing encompasses multiple disciplines, requiring knowledge of

accounting, budgeting, computer science, contracting, engineering, financial estimating,

finance, logistics planning, maintainability engineering, management, manufacturing

engineering, quality control, reliability, and statistical analysis [SELD79; DHIL89]. While

expertise in all of these areas is not essential, a basic familiarity with each is required for

the design of an accurate life cycle cost model.

 Historical Perspective

 Life cycle costing has a long history of use throughout industry. Used as a tool for

capital budgeting, life cycle costing has been applied to a wide variety of projects

[BROW85]. It dates back to 1887, when civilian engineer A. M. Wellington analyzed the

trade-offs between the initial cost of railway location and subsequent operating costs

[SHUP80].

 Life cycle cost analysis has long been utilized by the United States Department of

Defense. Applied to virtually every new weapon system proposed or under development

[BROW85], life cycle costing was introduced into the Department of Defense by "the

aircraft industry, where cost optimizing techniques evolved as part of the competitive

effort to sell commercial and military aircraft" [KNUS81,2]. Its importance to the defense

industry was emphasized by the finding that operation and support costs for a typical

weapon system accounts for as much as seventy-five percent of the total cost. In addition,

 5

operation and support costs over a ten- to fifteen-year life span often equal or exceed the

acquisition cost, thus requiring a larger portion of the budget and reducing the funds

available for other projects [GUPT83]. In 1970, the Department of Defense released the

"Life Cycle Costing Procurement Guide" (LCC-1) and the "Life Cycle Costing Casebook"

(LCC-2) to assist in implementing the concept of life cycle costing in the acquisition of

equipment below the level of complete systems [TAYL74]. In 1971, the Department of

Defense issued Directive 5000.1: Acquisition of Major Defense Systems, which established

the requirement for life cycle costing procurement for major defense systems acquisitions

[DHIL89]. In 1973, the "Life Cycle Costing Guide for Systems Acquisitions" (LCC-3) was

released [TAYL74]. Since the release of those documents, both the defense and aerospace

industries design their products in terms of life cycle cost objectives [BROW85].

 Other government entities require the use of life cycle costing for a variety of

purposes, not only because of its contributions to cost effectiveness, but also for energy

conservation programs. Since 1974, many states have passed legislation requiring the

incorporation of life cycle cost analysis into the planning, design, and construction of state

buildings [DHIL89]. The State Energy Conservation Program, which was established by the

Energy Policy and Conservation Act of 1975, made it mandatory that states develop energy-

efficient procurement procedures in order to qualify for program funds. Life cycle costing

is one method of validating the energy efficiency of such procurement procedures

[BROW85]. The National Energy Conservation Policy Act of 1978 requires that every new

federal building be life cycle cost effective [DHIL89].

 The health care field also utilizes life cycle costing. A study released by the General

Accounting Office in 1972 revealed that "the operating costs of a hospital in its first three to

five years of existence typically exceeded the entire cost of construction" [BROW85, 2].

That study served to stimulate interest in cost effective practices throughout the health

care industries.

 Several other industries make use of life cycle costing. Models exist for use in the

utilities industries, petroleum industry, manufacturing industry, chemical plants, radar

systems, appliances, and electronic equipment [DHIL89].

 6

CHAPTER II - MODEL DEVELOPMENT

 Life cycle cost models can be classified into a variety of categories. The

classifications encountered most often in literature include: financial, analytical/heuristic/

conceptual, parametric/accounting, and phased.

 Financially-oriented models are discussed in both Shupe and Brown [SHUP80;

BROW85]. This classification includes such models as the present worth method, annual

worth method, benefit/cost method, and return-on-investment method. Each of these

methods is based on the discount rate, which is the minimum acceptable rate of return on

an investment. The present worth method uses the discount rate to convert future

expenditures for each alternative to their equivalent present values, and then compares the

present worth of each alternative. The preferred alternative is that with the highest

present worth. The annual worth method uses the discount rate to convert the cash flow

from each alternative into equivalent uniform annual amounts, and then compares each

amount. The best economic choice is the one with the greatest equivalent annual worth.

The benefit/cost method separates costs from benefits, and using the discount rate

converts the cash flows to their equivalent annual (or present) values. The equivalent

benefits are compared to the equivalent costs for each alternative using the ratio of

benefits to costs. If the benefit/cost ratio is greater than one, then the alternative is

economically sound. The return-on-investment method determines a percentage rate of

return. If the rate of return for a particular alternative exceeds the discount rate, then that

alternative is acceptable.

 Both Dhillon and Gupta prefer to classify life cycle cost models into analytical,

heuristic, or conceptual categories [DHIL89; GUPT83]. Analytical models are based on

mathematical relationships designed to describe certain aspects of the system. The

subcategories of analytical models are design trade models, which minimize cost to meet a

specified design parameter such as reliability; total cost models, which minimize the total

life cycle cost of a system while maximizing its effectiveness; and logistic support models,

which determine costs of alternative support plans. Heuristic models are not as general as

analytical models and are usually suitable only for the specific situation for which they

 7

were developed. Conceptual models are based on the hypothesized relationships of

variables given in a qualitative fashion and are extremely flexible, accommodating a wide

range of systems.

 Knust and Priest classify models as parametric models and accounting models

[KNUS81; PRIE88]. Parametric models are based on a form of regression analysis in which

cost experience and performance level of past similar systems provide a baseline for

estimating the cost of future systems based on their projected level of performance

[PRIE88]. Parametric models are most useful early in the program before many of the

design decisions have been made. This type of model employs a forecasting approach in

which a product's cost is regressed against physical or performance parameters of past

products similar to the new system. The relationships between historical data and certain

design parameters available during preliminary design are analyzed and comparisons are

made using regression analysis [PRIE88]. Those parameters are independent variables

chosen from among the set of a product's characteristics believed to be estimable with

reasonable accuracy. Predicted values for the relevant parameters of the new system are

then substituted into an equation whose coefficients are derived from the historical data

[PRIE88].

 Parametric cost models are used to gain a rapid assessment of the overall life cycle

costs of a proposed system. The purpose of such models is to identify relative magnitudes

of cost. The results are used to disqualify proposal alternatives that generate cost

extremes. This allows the company to concentrate on those alternatives which appear to

be most cost effective [KNUS81].

 Accounting models use detailed algorithms to directly relate design decisions to

their effects on cost [PRIE88]. Factors related to design, such as part quality, producibility,

redundancy, reliability, and maintenance concepts, can be taken into account by the

engineer. As the design progresses and becomes more defined, cost trade-offs become

more exact. The major emphasis of accounting models is on design trade-offs [PRIE88].

 Accounting models are concerned with far greater detail than parametric models.

This detail involves both the financial planning aspect and the cost optimization of the

selected alternative [KNUS81]. This method has more potential for prediction accuracy

and design trade-offs than parametric models. It also provides more detailed visibility of

 8

the various data sensitivities [PRIE88].

 Phased models include both a two phase model and a four phase model. The models

presented by Taylor and Priest are partitioned into acquisition costs and sustaining costs

[TAYL74; PRIE88]. Acquisition costs are those costs associated with research, design,

production, and test, or with procurement. Sustaining costs involve such items as

maintenance, training, and other operating expenses.

 Seldon and Blanchard present a life cycle cost model which is partitioned into four

phases [SELD79; BLAN78; BLAN81; BLAN90]. Those four phases are the research and

development phase, the production phase, the maintenance phase, and the retirement and

disposal phase. Blanchard explains each of the partitions as follows:

1. Research and development (R&D) cost--the cost of feasibility studies; system
analysis; detail design and development, fabrication, assembly, and test of
engineering models; initial system test and evaluation; and associated
documentation.

2. Production and construction cost--the cost of fabrication, assembly, and test

of operational systems (production models); operation and maintenance of
the production capability; and associated initial logistic support
requirements (e.g., test and support equipment development, spare/repair
parts provisioning, technical data development, training, entry of items into
the inventory, facility construction, etc.).

3. Operation and maintenance cost--the cost of sustaining operation, personnel

and maintenance support, spare/repair parts and related inventories, test
and support equipment maintenance, transportation and handling, facilities,
modifications and technical data changes, and so on.

4. System retirement/phase-out cost--the cost of phasing the system out of the

inventory due to obsolescence or wearout, and subsequent equipment item
recycling and reclamation as appropriate. [BLAN81, 21]

 Model Design

 The process of developing a life cycle cost model requires that the designer first select

the type of model which can most closely replicate the life cycle of the system under

consideration. The analyst must next generate a comprehensive list of the factors which

are pertinent to the system life cycle being modeled. Next, the cost breakdown structure

 9

must be established. The cost breakdown structure illustrates "the numerous and varied

segments of cost that are combined to provide the total system/product cost" [BLAN78,

191]. Seldon notes that a mathematical structure, such as the cost breakdown structure,

describes how the life cycle cost elements are summed, and is an accounting model

[SELD79]. It is further noted that the "addition of the cost-estimating relations for each

element to the mathematical structure yields an estimating model" [SELD79, 158].

 After considering the exposition of life cycle cost model development in Seldon, as

well as the advantages of the accounting model over the parametric model as cited in Priest

and Knust, it was decided that the appropriate model would be an accounting model

[SELD79; PRIE88; KNUS81]. Rather than rejecting outright the idea of parametric models,

it was decided that parametric methods would be more appropriately utilized to determine

valid cost-estimating relationships during the cost determination phase of life cycle costing.

 Extensive research evaluating model classifications led to the conclusion that the four

phase model would serve as the most appropriate guide for the development of a life cycle

cost model for an embedded controller. The four phase model is an accounting model, and

can also be classified as an analytical model, more specifically a total cost model.

 Many factors influence both life cycle cost and system effectiveness. Reiche writes

that:

Probably one of the most controversial and difficult subjects of LCC studies is
the type of factors which one should include in the evaluation, analysis,
estimation, etc. The reason for the controversy lies in the fact that almost
everyone has a different view of what constitutes important factors. [REIC80,
5]

 Some of the major factors which come into play in the life cycle of an embedded

controller include the hardware/software partition and the make/buy partition. One of the

key tasks in the design of any microprocessor-based system is the determination of which

functions are best performed by hardware and which are best performed by software. The

purpose of the hardware/software trade-off determination is to minimize the cost of the

system. Hardware implementations are generally faster but more expensive in the

production phase, while software implementations are slower and more costly in the

development phase, but more flexible in terms of modifications to the design [LAM88]. The

make/buy partition involves which components should be designed and produced in-house

 10

and which should be contracted out or procured from a vendor. Components designed and

produced in-house require more development time, in-house expertise, and production

costs, but have the advantage of being designed specifically for the task at hand. Procured

components eliminate development and production costs, but if contracted out may be

considerably more expensive, and if procured off-the-shelf may not be as

application-specific as desired. These factors, as well as others such as integration and

testing, distribution, and system support costs, must all be considered and included in

model design.

 The cost breakdown structure provides a mathematical framework which can be used

to calculate overall life cycle costs. It serves to delineate and categorize all significant high

cost contributors, and outlines the quantitative relationships which are used to derive the

overall life cycle cost. Blanchard explains that:

The cost breakdown structure... [consists] of the various elements of cost
that when combined, represent total life cycle cost. The categories identified
indicate cost collection points which can be summarized upward into
broader categories and/or can be collected for different program functions
or system elements. The intent is to incorporate a high degree of flexibility
in order to provide the necessary visibility for cost allocation, cost
measurement, and cost control. [BLAN78, 191]

 The cost breakdown structure must be accompanied by an explanation of each cost

category, the symbology used in the CBS, and the quantitative relationships used to derive

the total cost.

 Life cycle costing constitutes a compilation of a variety of cost factors representing

many different types of activities [BLAN78]. When developing the cost breakdown

structure, it sometimes becomes apparent that the model would be clearer and more

meaningful, as well as more usable, if it was partitioned into subsystems. The life cycle of

an embedded controller consists of various optional approaches and the associated life

cycle cost model under development lends itself to the use of individual models for analysis

at the alternative level.

 If the life cycle cost model is composed of various sub-routines which address the

major areas where high cost visibility is desired, then the system can be evaluated in terms

of total life cycle cost as well as the various individual segments of cost [BLAN78].

 11

Individual models can be utilized for analyses at the subsystem or alternative level and still

provide the necessary data for the life cycle cost model [BLAN78]. Thus, partitioning the

model into subsystems provides flexibility such that the analyst may evaluate either the

system as an entity or any major segment thereof [BLAN78].

 Before developing a life cycle cost model in its entirety from the ground up, existing

tools should be considered. Blanchard notes that:

In selecting a model for evaluation purposes, it is desirable to first investigate
those tools that are currently available. If a model already exists and is
proven, then it may be feasible to adopt that model. [BLAN78, 87]

 Models which are capable of calculating life cycle costs for a specific segment, or even

the entire entity, may have already been developed and tested. If an existing model can be

utilized, much time and effort can saved. In the case of the embedded controller, where

both hardware and software components are essential, potential models exist and will be

considered for the hardware subsystem as well as the software subsystem.

 The Life Cycle Cost Model for an Embedded Controller

 The life cycle cost model is presented in the form of a cost breakdown structure in

this chapter, accompanied by a table in the Appendix which explains each cost category, the

symbology used, and the quantitative relationships used to derive costs. As noted earlier,

the mathematical structure embodied in a cost breakdown structure details how the

various categories are summed and serves as an accounting model [SELD79]. The cost

breakdown structure is illustrated on the following pages. It is presented in both diagram

and outline form. The overall cost breakdown structure (Figure 2.1) is partitioned into

research and development (Figure 2.2), production (Figure 2.3), maintenance and support

(Figure 2.4), and retirement and disposal (Figure 2.5).

 Figure 2.1. Overview of Life Cycle Cost Model.

 12

Figure 2.2. Detailed view of the R&D Branch of the Life Cycle Cost Model.

 13

I. Research and Development Costs

 A. System/Product Management

 B. Product Planning
 1. Market Analysis
 2. Feasibility Studies
 3. Program Planning

 C. Functional Specification of Microprocessor System
 1. System Engineering
 2. Conceptual Design
 3. Preliminary Design

 D. Hardware/Software Partition
 1. Hardware
 a) Hardware Design
 (1) Detailed Design
 (2) Design Support
 (3) Design Review

 b) Make/Buy Partition
 (1) Hardware construction in-house
 (a) Prototype Fabrication
 (2) Hardware procured from vendor
 (a) Evaluation
 i) Product Evaluation
 ii) Vendor Evaluation
 (b) Unit Costs (Vendor price)

 c) Hardware Integration
 (1) Integration of components
 (2) Design Documentation
 (a) Compile In-house Documentation
 (b) Compile Vendor-provided Documentation
 (c) Establish Documentation Library

 d) Hardware Test and Evaluation
 (1) Test Planning
 (2) Test and Evaluation
 (3) Test Data/Reports

 2. Software
 a) Software Design
 (1) Software Design
 (2) Design Support
 (3) Design Review
 (4) Software Specifications

 b) Make/Buy Partition
 (1) Software developed in-house
 (a) Software Engineering Support Tools
 (b) Software Development Tools
 (c) Implementation
 (d) Integration
 (e) Testing
 (f) Documentation
 (g) Verification and Validation
 (h) Rework (Debugging)
 (i) Quality Assurance
 (2) Software procured from vendor
 (a) Evaluation
 i) Vendor Evaluation
 ii) Product Evaluation
 (b) Vendor Fees
 i) Procurement Costs
 ii) Site License Agreement
 iii) Networking Capabilities
 (c) Training costs

 c) Software Integration
 (1) Integrate procured/produced subsystems
 (2) Software Documentation
 (a) Compile In-house Documentation
 (b) Compile Vendor-provided Documentation
 (c) Establish Documentation Library

 d) Software Test and Evaluation
 (1) Test Planning
 (2) Test and Evaluation/System Testing
 (3) Verification and Validation
 (4) Test Data/Reports

 E. Integrated Testing
 1. Test Planning
 2. Test and Evaluation/System Testing
 3. Verification and Validation
 4. Test Data/Reports

 F. Integration and Testing
 1. Integration of HW/SW
 2. Integration and Archival of All Documentation
 3. System/Product Test and Evaluation
 a) Test Planning
 b) Test and Evaluation
 c) Test Data/Reports

Figure 2.2. (continued)

 14

Figure 2.3. Detailed view of the Production Branch of the Life Cycle Cost Model.

 15

II. Production Costs

 A. Production/Construction Management

 B. Construction
 1. Production Facilities
 2. Test Facilities
 3. Maintenance Facilities (Acquisition)
 4. Inventory Warehouses

 C. System Production
 1. Hardware Components
 a) Make/Buy Partition
 (1) Hardware Produced in-house
 (a) Industrial Eng./Operations Analysis
 i) Manufacturing Engineering
 ii) Methods Engineering
 iii) Production Control
 (b) Manufacturing
 i) Recurring manufacturing costs
 (i) Fabrication
 (ii) Subassembly/Assembly
 (iii) Material (Inventories)
 (iv) Inspection and Test
 (v) Manufacturing Rework
 ii) Nonrecurring manufacturing costs
 (i) Tooling/Test Equipment
 (c) Quality Control
 (2) Hardware Procured from vendor
 (a) Procurement
 i) Unit Cost
 ii) Maintenance Contract
 b) Hardware Integration
 (1) Integration of components
 (2) Inspection and Test
 (3) Quality Control

 2. Software Components
 a) Make/Buy Partition
 (1) Produced In-House
 (2) Procured from vendor
 (a) Vendor Fees
 i) Procurement
 ii) Site License Agreement
 iii) Networking Capabilities
 b) Software Integration
 3. System Integration

 D. System Documentation Printing

 E. System/Product Distribution
 1. Marketing and Sales
 2. Packaging
 3. Transportation and Handling
 4. Warehousing (Product)

 F. Initial Logistics Support
 1. Program Management
 2. Provisioning
 3. Initial Spare/Repair Parts
 4. Initial Inventory Management
 5. Technical Data Preparation
 6. Initial Training and Training Equipment
 7. Test and Support Equipment Acquisition
 8. Initial Transportation of Logistics Support

 Figure 2.3. (continued)

 16

Figure 2.4. Detailed view of the Maintenance and Support Branch of the Life Cycle Cost

Model.

III. Maintenance Support Cost

 A. System/Product Life Cycle Management

 B. Maintenance Training and Facilities

 1. Maintenance Training

 a) Maintenance Training

 b) Training Facilities (upkeep)

 c) Training Data

 2. Maintenance Facilities (Upkeep)

 C. System Maintenance

 1. Hardware Maintenance

 a) Hardware Maintenance

 (1) Field Maintenance

 (2) Factory Maintenance

 (3) Test and Support Equipment

 b) Inventory - Spares and Material Support

 (1) Spare/Repair Parts (For Maintenance)

 (2) Storage and Handling

 (3) Inventory Management

 c) Technical Data

 d) System/Product Modifications

 2. Software Maintenance

 a) Configuration Management

 b) Software Maintenance

 (1) Perfective Maintenance (Upgrades)

 (2) Corrective Maintenance

 (3) Adaptive Maintenance (Modifications)

 (4) Debugging and Diagnostic Equipment

 Figure 2.4. (continued)

 17

Figure 2.5. Detailed view of the Retirement and Disposal Branch of the Life Cycle Cost

Model.

IV. Retirement and Disposal

 A. Hardware

 1. Disposal of Non-Repairable Elements

 2. System/Product Retirement

 a) Personnel

 b) Support Equipment

 c) Transportation and Handling

 3. Documentation

 B. Software

 1. Archive Outdated Software Upon Upgrade

Release

Figure 2.5. (continued)

 This cost breakdown structure is intended to reflect all of the cost categories

associated with the life cycle of an embedded controller. To get a complete view of each

phase, each of the subsections must be considered. For example, the research and

development phase must take into account management tasks, product planning,

functional specifications, the hardware/software partition, integrated testing, and

integration and testing. This cost breakdown structure is loosely based on a general cost

breakdown structure presented by Blanchard [BLAN78].

 18

CHAPTER III - COST DETERMINATION

 After the cost breakdown structure has been completed, it is necessary to generate

the cost data which will serve as input to the quantitative relationships specified for the

various cost categories. "The estimation of future costs is probably one of the most difficult

tasks in the accomplishment of a life cycle cost analysis" [BLAN78, 35]. Sources of cost

estimation data include historical data, bids and proposals from suppliers, forecasting

accomplished through the use of parametric methods, and practical knowledge of

engineering techniques based on experience [BLAN78].

 Different methods for predicting costs are applicable during different phases in the

system life cycle. During the early design stages, available data are scarce. Therefore, costs

must be estimated primarily through projections based on past experience with similar

systems, the use of parametric cost estimating relationships, and knowledge based on

experience. As the design becomes more advanced, improved data, such as drawings,

specifications, parts lists, predictions, etc., become available and the analyst is able to

utilize them to perform a more thorough analysis [BLAN78]. Finally, after the system is

produced and put into operation, test and field data become available for assessment

purposes. Using this real world data as input into the life cycle cost model, more accurate

life cycle cost figures can be obtained [BLAN78].

 Cost estimates are derived from:

(a) Extant data,

(b) Estimating relationships, and

(c) Practical knowledge.

 The initial step in performing cost estimation is the investigation of all possible data

sources to determine what data is available and to evaluate its applicability. The analyst

should research available data in existing databases, supplier documentation, system

planning data, reliability and maintainability predictions, engineering test and field data,

etc. [BLAN90].

 19

 One method of acquiring cost estimation data is by establishing a correlation between

existing costs and new costs [REIC80]. Historical data can often be used as the basis for

such comparisons. In many cases, systems which are similar in configuration and function

to the system under consideration are already in existence. If cost data has been recorded

for such systems, then that information can serve as a database for the current project.

Thus, actual historical information can be employed in deriving future estimates on the

basis of similarity. Some data can be used directly, but other data may make it necessary to

apply adjustment factors to compensate for any differences in technology, configuration,

etc. This technique is sometimes referred to as analogous cost estimating [BLAN90].

 Supplier documentation such as proposals, catalogs, design data, and reports

covering special studies conducted by suppliers may qualify as a data source. Potential

suppliers may submit proposals for consideration, and these proposals may include not

only procurement costs but sometimes life-cycle cost projections [BLAN90]. Reiche notes

the usefulness of vendor catalogs:

Although the price for a single item in a catalogue may not reflect the actual
market price, it is a base from which one can operate. In a sense it is
historical information which once must have been correct and used. The
comparison of one catalogued item and the same from another catalogue
may yield a good estimated price. [REIC80, 5]

 Another source of cost data is advanced planning data such as market analysis data,

system operational requirements, the maintenance concept, and the results of technical

feasibility studies. Information pertaining to the proposed physical configuration, major

performance features of the system, system effectiveness, and maintenance and logistic

support provides essential input to the cost estimation process [BLAN90].

 Individual cost estimates, predictions, and analyses, which take place throughout the

research and development, production, and maintenance phases of the system life cycle,

should be considered as another source of cost estimation information. Estimates

associated with research and development include initial engineering cost estimates or

cost-to-complete projections. Such projections deal primarily with labor costs. Production

cost estimates are often based on individual manufacturing cost standards, value

engineering data, industrial engineering standards, etc. Maintenance cost estimates are

 20

based on the predicted frequency of maintenance or the mean time between failures

(MTBF) factor, since support costs are basically a function of the inherent reliability and

maintainability characteristics in the system design [BLAN90].

 More cost estimation data becomes available during the later stages of system

development and production. When the system is being tested or is in operational use,

engineering test and field data may be used to access the impact on life cycle cost that may

result from any proposed modifications to hardware, software, and/or the elements of

logistic support [BLAN90].

 If no suitable data is available, then the use of parametric cost estimating methods

may be called for. The use of parameters involves developing a generalized relationship

between one or more program characteristics and the cost [SELD79]. These parametric

relationships are called cost estimating relationships, or CERs.

 Dhillon defines a cost estimating relationship as "an equation relating cost as the

dependent variable to one or more independent variables" [DHIL89,4]. These CERs relate

various cost categories to cost generating variables. These variables usually represent

characteristics of system performance, physical features, system effectiveness, etc.

[BLAN78]. Thus, the CER transforms the problem from one of estimating dollars to one of

estimating more familiar and more accessible variables [SELD79].

 Blanchard discusses the formulation of valid parameters:

Cost estimating relationships may assume numerous forms, varying from
informal rules of thumb or simple analogies to a more formal mathematical
relationship derived through a statistical analysis of empirical data.
Generally, cost and related data are collected on existing systems in the
inventory, analyzed, converted to some form of relationship, and applied to a
new system (which is similar in form and function) as a predicting tool.
Given an identifiable database, the analyst assumes some theoretical
relationship and then proceeds to test that relationship for validity....
[BLAN81, 373]

 Cost estimating relationships may be expressed in various ways, for example, linear

functions, nonlinear functions, or multivariate functions.

 The estimating relationship may take the form of a linear function expressed by the

equation

cost = (some constant)(variable X)

 21

Using a plot of several data points, a linear relationship can be established through curve

fitting techniques or through linear regression analysis [BLAN81].

 Nonlinear cost relationships may be normal, log-normal, exponential, or hyperbolic in

nature. Some cost relationships are discontinuous in nature. A step function assumes one

form between two discrete values of a variable and another form between other values of

the same variable. In other words, the function is constant over a certain range, then

suddenly shifts to another level before becoming once again constant over another range of

values [BLAN81].

 Multivariate functions may be used to express cost estimating relationships in

situations in which multiple variables are required to express cost. The cost function may

be expressed in the form

cost = 100 + (K1)(X1) + (K2)(X2)

where K is some fixed constant and X is some variable [BLAN81].

 When multiple parameters are involved in cost estimating, each parameter should be

evaluated from the standpoint of degree of importance, that is, how greatly it influences the

cost of the system. The degree of importance can be incorporated by assigning a weighting

factor to each parameter.

 The following section is devoted to the discussion of various parameters which

should be considered when performing cost estimation for an embedded controller. Both

hardware and software parameters are dealt with.

 Parameters should be selected with discretion. Selection of invalid or unsuitable

parameters may introduce a great deal of error into the cost estimation process. Cost

estimating relationships are highly significant factors in cost estimation and, if improperly

applied, can invalidate the entire life cycle cost model.

 The final cost estimating technique is the use of estimates based on practical

experience. Individuals with extensive experience in their field can generally accurately

estimate the time and cost associated with a job. Seldon discusses this estimating

technique:

The most acceptable and time-honored approach to engineering cost
estimates is to ask the people who will have to do the job how much it will
cost. They certainly ought to know and they do. That is, they do if they
receive the proper directions. They must have a clear description of the task

 22

(a statement of work with performance specifications, data requirements,
test requirements, and so on), a definition of which organization does each
task, and a schedule. Each part of the organization is then requested to
estimate the cost of doing the task assigned to it. It does this estimating
generally by analogy, by its own CERs, or by even more esoteric methods.
[SELD79, 31]

 Regardless of which cost determination method is used, it is clear that life cycle cost

analysis is an iterative process which is carried out throughout the life cycle of the system.

The analyst uses the best data available at each stage. Although cost estimates based on

analogous cost estimating techniques and/or data gained from practical experience are

easier to develop, the usefulness of parametric methods for generating cost estimates

should not be underestimated.

Potential Parameters

 In the development of cost estimating relations for an embedded controller, there are

several cost generating variables which must be considered. The major cost drivers are, of

course, not only directly influenced by the hardware/software trade-off as well as the

make/buy decision, but also by a myriad of system characteristics which must be

considered as well.

 As noted previously, a hardware implementation of a function is more expensive in

terms of production costs, while a software implementation is more expensive in terms of

development costs but is more flexible in terms of modifications to the design. Lam

reaches the conclusion that:

Consequently, for a μP-based system with a projected large production
volume, hardware components should be kept at a minimum, and functions
should be implemented with software modules whenever performance
requirements permit. The increase in initial (software) development cost
will be averaged over the large number of units produced.... On the other
hand, if the production volume will be small, then the initial (software)
development cost dominates the production cost. In this case, hardware
implementations of functions can be more cost-effective. [LAM88, 462]

 The decision to make or buy a component can also be a major cost driver. As noted in

a previous chapter, components designed and produced in-house require extensive

 23

development time and costs, the cost and availability of in-house experts, and related

production costs. Such components, however, are tailored for their specific application.

Procured components bypass development and production costs, but procurement costs,

which include a vendor profit margin, must be considered. Although procured components

are generally available more quickly, they have the drawback of being designed for generic

applications and may include unnecessary features or lack desired ones. Fabrycky explains

how to assess the make or buy situation:

The question of whether to manufacture or purchase a needed item may be
resolved by the application of minimum cost alternatives for multiple
alternatives. The alternative of producing may be compared with the
alternative of purchasing if the minimum cost procurement quantity for each
is computed and used to find the respective cost values. Choice of the total
cost value that is minimum identifies the better of the two alternatives.
[FABR80, 337]

 Aside from the hardware/software trade-off and the make/buy decision, there are

additional parameters which must be considered, parameters associated with both the

hardware components and with the software components.

 Various parameters directly influence the cost of the hardware components which

make up an embedded controller. All phases of the system life cycle, development,

production, maintenance, and disposal, are affected. Cutaia, Gibson, and Lam discuss

several parameters which should be investigated when developing accurate cost estimating

relationships for an embedded controller [CUTA90; GIBS79; LAM88].

 Parameters which influence the complexity, and therefore the cost, of design include

microprocessor-related factors, bus-related details, and miscellaneous features (Figure

3.1).

 24

Figure 3.1. Design Parameters.

 The cost of the development and diagnostic support tools associated with the selected

microprocessor must be considered. In addition, the effort required to develop and debug

the microprocessor-based system is a major cost, and is dependent on such factors as the

scope and flexibility of the instruction set as well as the upward compatibility of the

instruction set.

 Various details associated with the selected bus also affect the development costs.

The benefits provided by a particular operating system in terms of the quality of software

development systems and the extent of existing software can greatly influence

development time and costs.

 Miscellaneous factors such as the number of planes in each board, the choice of

silicon versus gallium arsenide integrated circuits, and heat transfer factors all influence

the complexity of the design process.

 Production costs are influenced by the cost and availability of components (Figure

3.2). The cost of components is influenced by their complexity and capabilities, as well as

their position relative to the leading edge of technology.

 Factors which influence the complexity of a microprocessor include the execution

speed. If the application is computation-intensive, then the instruction cycle time of

arithmetic instructions or the availability of a floating point unit is significant. If the

application is input/output-intensive, then the instruction cycle time of I/O instructions or

the availability of an I/O processor is important. Another factor is the size of the address

Processor Characteristics

• cost of diagnostic and support tools

• upward compatible instruction sets

• scope of instruction set

Bus characteristics

• benefits provided by operating system

- software development systems

- existing software base

• availability and range of off-the-shelf components

Miscellaneous factors

• number of planes in board

• choice of silicon versus gallium arsenide

• heat transfer factors

 25

bus. The capacity of the address space influences the complexity of the microprocessor

system that it can support. The word size of a processor is determined by the width of its

internal registers and the width of the data bus. Processors with larger word sizes are

more powerful. Multitasking support hardware allows the system to process multiple

tasks or users. The presence of such hardware increases the complexity and costs of the

processor. Other factors, such as the processor's position in the processor family and the

length of time that the processor has been on the market also contribute to costs. Finally,

the cost of the processor is sometimes reduced by the availability of second sources.

 The costs related to bus selection also influence the cost of each unit produced.

Factors such as the relative capabilities of the bus greatly affect the cost of off the shelf

boards. For example, boards which have been designed for the Futurebus are considerably

more expensive than boards for the VMEbus. As was noted with respect to the

microprocessor, the availability of second sources tends to reduce prices.

Figure 3.2. Production Parameters.

Processor characteristics

• execution speed

- instruction cycle time of arithmetic instructions or FPU

availability for

computationally intensive applications

- instruction cycle time of I/O instructions or IOP availability for

I/O intensive applications

• address space--size of address bus

• word size--size of data bus and internal registers

• multitasking support hardware

• position in processor family

• length of time on the market

• second sources

Bus characteristics

• capabilities of bus

• availability of second sources

Miscellaneous factors

• number of planes in board

• mean time between failures

• choice of silicon versus gallium arsenide

• heat transfer requirements

• need to supercool chip to enhance superconductivity

• special power requirements

• extensive memory requirements

• EPA regulations on disposal of etching chemicals

 26

 There are other factors which influence the costs of the production of an embedded

controller. An increase in the number of planes in the board, higher mean time between

failures, the choice of gallium arsenide rather than silicon, stringent heat transfer

requirements, the need to supercool the chip to enhance superconductivity, special power

requirements, extensive memory requirements, and Environmental Protection Agency

regulations on the disposal of etching chemicals all contribute to increased production

costs.

 Maintenance costs are influenced by continued vendor support of chips, boards, bus

standards, and operating system software, as well as the availability of second sources for

those items (Figure 3.3). If any of the system components are no longer supported and no

alternate vendor is available, maintenance costs will escalate drastically. Maintenance

costs are also influenced by the mean time between failures (MTBF) related to the various

components. The mean time between failures influences many phases of the life cycle.

Perrigo notes that:

...the cost of the hardware, that is the purchase price of the electronic
equipment, increases as higher and higher MTBF are demanded....It can also
be seen that the [overall] cost of maintenance labor and materials decreases
with increasing MTBF, as a result of the fact that fewer failures occur, and
thus fewer maintenance actions are required. [PERR74, 522]

 de Neumann notes that reliability is the most important driver of life cycle costs,

closely followed by maintainability [DENE83].

 Factors which influence the disposal costs include the disposal of contaminated

equipment in accordance with EPA regulations (Figure 3.3).

Figure 3.3. Maintenance and Disposal Parameters.

Maintenance parameters

• Continued vendor support of chips, boards, bus, operating

system

• Second sources of chips, boards, OS

• MTBF of components

Disposal parameters

• Disposal of contaminated equipment

 27

 Both the cost of producing software and the reliability of that software are becoming

major influences in life cycle costing [DENE83]. In fact, it appears that software costs are

becoming increasingly greater relative to hardware costs [DENE83]. It is expected that the

software production costs will eventually become the dominant feature of life cycle costing

and software reliability a major parameter of a system's effectiveness [DENE83].

 Boehm discusses several parameters which influence life cycle costs [BOEH81].

These parameters are included in Boehm's Constructive Cost Model (COCOMO), and apply

to both the development phase and the maintenance phase [BOEH81]. The parameters can

be classified as product attributes, computer attributes, personnel attributes, and project

attributes. Sommerville summarizes the parameters as follows [SOMM89].

 Product attributes reflect such factors as software reliability, database size, and

product complexity (Figure 3.4). Required software reliability can be gauged by the

repercussions associated with a software failure, ranging from minor inconvenience to loss

of life. The database size parameter is based on a comparison of the size of the database to

the number of delivered source instructions (DSIs), ranging from ten times less than the

number of DSIs to one thousand times more than the program size. Product complexity

rates the complexity of the code. Low complexity code involves simple input/output

operations, simple data structures, and sequential code. Nominal complexity uses multi-

file input/output, use of library routines, and inter-module communication. Very high

complexity code might involve re-entrant or recursive code, complex file handling, parallel

processing, etc.

Figure 3.4. Product Attributes.

 Computer attributes refer to hardware constraints such as speed and space

restrictions which affect software productivity (Figure 3.5). Execution time constraints

refer to the percentage of available execution time which is used. Similarly, storage

constraints refer to the percentage of available storage which is used. That storage

Required software reliability

Database size

Product complexity

 28

pertains to direct random access storage devices such as disk drives. Virtual machine

volatility refers to the frequency at which the virtual machine is altered. The virtual

machine is the combination of hardware and software that the system utilizes to complete

its tasks. Computer turnaround time indicates the level of computer response time

experienced by the software development team. This factor is no longer as much of a cause

for concern as it was when COCOMO was first developed.

Figure 3.5. Computer Attributes.

 Personnel attributes reflect the capabilities and experience of the software

development team (Figure 3.6). Analyst capability includes such concerns as analyst

abilities, efficiency and thoroughness, and the ability to communicate and cooperate.

Applications experience refers to the length of applications experience of the software

development team. Programmer capability rates the capabilities of the programmers in

the same manner that the analyst was rated. Virtual machine experience refers to the

length of experience that the software development team has with the particular virtual

machine. Programming language experience gauges the experience level of the team with

respect to the programming language to be used.

Figure 3.6. Personnel Attributes.

 Project attributes refer to such factors as the use of modern programming practices,

use of software tools, and the scheduling constraints (Figure 3.7). Modern programming

practices include such techniques as top-down design, structured programming

Analyst capability

Applications experience

Virtual machine experience

Programmer capability

Programming language experience

Execution time constraints

Storage constraint

Virtual machine volatility

Computer turnaround time

 29

techniques, design and code inspections, etc. This parameter measures the degree to which

these practices are utilized. The use of software tools refers to the extent that software

tools are utilized. A low value assessment of this parameter indicates that only basic tools

such as an assembler are utilized, while a high value means that tools are available to

support all development phases. The schedule constraint parameter refers to the level of

schedule constraint imposed on the software development team. This parameter can

reflect a range of schedule durations from an accelerated schedule to an extended schedule.

Figure 3.7. Project Attributes.

 Obviously not all of these parameters will come into play for every embedded

controller project. The analyst using the life cycle cost model must select those parameters

which appear to be the major cost drivers for the project under consideration, and weight

them accordingly.

Modern programming practices

Use of Software tools

Scheduling constraints

 30

CHAPTER IV - VALIDATION AND USES

 Validation refers to the process of insuring that the selected model incorporates the

necessary characteristics to perform an accurate cost estimation. Model validation is

difficult because the model is designed to estimate future costs which are impossible to

verify. It may be possible to select as a reference an existing system which has been in use

for a substantial period of time and which is similar to the proposed system. The model is

then applied to the reference system by using existing data gathered from the reference

system as an input to the model. The output results are compared with actual cost figures

associated with that system. A close correlation between the results and actual figures

indicates that the model is valid in terms of the target application. On the other hand, if the

results are significantly different, then the analyst must determine the source of the

incongruities and the reasons for such [BLAN78].

 It should be possible to validate the life cycle model for an embedded controller by

applying it to a similar FSI project which has been completed. If thorough records were

maintained, the project should yield accurate cost figures relating to its research and

design, production, maintenance, and anticipated disposal. Those figures can be applied to

the model to determine an overall life cycle cost. This figure can then be compared to the

actual life cycle cost as determined by project leaders. As with any validation process, the

success of the validation depends not only on the validity of the model, but also on the

validity of the test data [PRIE88].

 Applications of Life Cycle Costing

 Life cycle costing should be used within the framework of cost effectiveness. Cost

effectiveness is the measure of how much performance can be obtained for a given cost,

that is, the estimated effectiveness of a system as a function of its cost in dollars [BOEH81].

 31

 Cost effectiveness encompasses both system effectiveness and total life cycle cost

(Figure 4.1). System effectiveness refers to how well a system fulfills a need and may be

expressed by various figures-of-merit such as speed, accuracy, or the probability of system

success [BLAN78].

Figure 4.1. Components of Cost Effectiveness. [Adapted from BLAN78.]

 Cost effectiveness is not only influenced by the characteristics of system design, but

also by the effectiveness of the logistic support capability. For example, an embedded

controller may be an excellent performer when it is operating correctly; however, unless

there is adequate logistic support available when it fails, its overall usefulness is severely

impaired.

Cost Effectiveness

Cost Effectiveness Cost Effectiveness

• Research &

Development Cost

• Production Cost

• Maintenance Cost

• Retirement & Disposal

Cost

• System Performance–

Tech. Characteristics,

Speed, Capacity, etc.

• System

Effectiveness–

Availability,

Dependability, etc.

Design & Production

Attributes

Logistics Support

Elements

Functional Design

Reliability Design

Maintainability Design

Safety Design

Producibility

Other Design

Characteristics

Training

Supply Support

Test & Support Eqmt

Transportation/Handling

Technical Data

 32

 When evaluating various design alternatives, not only should system effectiveness

and performance parameters serve as criteria for the determination of a preferred

approach, but life cycle cost must be considered as well.

 One of the primary applications of life cycle cost models is to evaluate various

alternative approaches in order to determine the most cost effective system configuration.

A life cycle cost analysis is conducted to evaluate each possible candidate to determine

which of the various candidates being considered is preferred from an overall cost

effectiveness standpoint [BLAN78].

 The evaluation process is conducted with the goal of selecting the preferred design

alternative, and involves a comparison of all possible alternatives. Blanchard explains the

complexity of the process:

...there may be many top level candidates for consideration, many different
configurations of each major candidate, numerous variations within each
configuration, and so on. Initially, major candidates are considered and a
preferred approach is selected. Then, different configurations of the selected
approach are evaluated and a specific configuration is chosen from that
group of alternatives. This is an iterative process working from the top level
down to the depth necessary to support a given decision. [BLAN78, 78]

 The cost breakdown structure serves as a starting point for conducting a life cycle

cost analysis of the proposed alternative configurations. Although some of the cost

categories of the generic model may be irrelevant or insignificant in terms of magnitude of

cost, the overall cost breakdown structure should provide a guide for cost accumulation

and comparison of alternatives.

 As Figure 4.2 indicates, the analysis involves the evaluation of alternative

configurations, and the selection of a preferred approach. In each instance, there will be

required activities involving planning, management, engineering design, test and

evaluation, production, distribution, system operations, maintenance and support, and

ultimate equipment disposal.

 In an attempt to determine specific costs, the analyst may wish to perform the

following steps:

(a) Identify all anticipated program activities that will generate costs in the life cycle

for each of the alternatives.

 33

Figure 4.2. The Basic Evaluation Process. [Adapted from BLAN78.]

(b) Relate each activity to a specific cost category in the CBS. Each activity should

fall into one or more of the categories of the CBS. If not, the CBS should be

modified to include overlooked expenditures.

(c) Develop a cost matrix-type worksheet for the purposes of recording costs for

each applicable category by year in the life cycle (Figure 4.3).

(d) Determine cost input data for each activity included in the matrix, and record

that data in the matrix.

(e) Accumulate the costs in the matrix to arrive at a total life cycle cost for each

configuration.

 Before making a recommendation based on the figure obtained from life cycle cost

analysis, the analyst should review the process to verify its accuracy. A sample checklist is

presented in Figure 4.4 as an aid in assessing the final results. The checklist is made up of

questions pertinent to any analysis, and which should all receive an affirmative response.

Items such as the problem definition, stated assumptions, selected parameters, and data

input should be verified for accuracy and applicability.

Alternative “A”

Alternative “B”

Alternative “C”

Alternative “N”

Evaluation of

Alternatives &

Recommended

Approach

Identified Need

and Problem

Statememt

Does

Selected

Approach Meet

Need?

Reassess Need and

Establish New Alternatives

No

Yes

Proceed

 34

 When parametric cost estimating methods have been employed, a sensitivity analysis

may be conducted in order to determine the validity of the recommended approach. A

Cost Category
Alternative "A" Alternative "B"

 Cost ($) % of Total Cost ($) % of Total

1. Research & Development Cost (CR)

(a) System/Product Management

(CRM)

(b) Product Planning (CRP)

(c) Functional Specification of

(d) Microprocessor System (CRF)

(e) Hardware/Software Partition

(CRD)

(f) Integrated Testing (CRT)

(g) Integration and Testing (CRI)

Sub-Total

132,563

 50,100

165,717

 153,292

 51,496

 99,836

 653,004

 20.3

 7.7

 25.4

 23.5

 7.9

 15.3

 33.6

 131,928

46,997

 115,389

 140,710

 72,664

 109,095

 616,783

 21.4

7.6

 18.7

 22.8

 11.8

 17.7

 32.4

2. Production Cost (CP)

(a) Production/Construction

Management(CPM)

(b) Construction (CPC)

(c) System Production (CPP)

(d) System/Product Documentation

(CPT)

(e) System/Product Distribution

(CPD)

(f) Initial Logistics Support (CPL)

Sub-total

 95,500

 250,000

 175,000

 12,000

 32,000

 65,103

 629,603

 15.2

 39.7

 27.8

 1.9

 5.1

 10.3

 32.4

 75,000

 135,500

 223,750

 11,000

 45,000

 74,525

 564,775

 13.3

 24.0

 39.6

 1.9

 8.0

 13.2

 29.6

3. Maintenance Support Cost (CM)

(a) System/Product Life Cycle Mgmt

(CML)

(b) Maintenance Training & Facilities

(CMT)

(c) System Maintenance (CMS)

Sub-Total

 75,435

 125,350

 443,720

 644,505

 11.7

 19.4

 68.8

 33.2

 67,935

 154,310

 484,940

 707,185

 9.6

 21.8

 68.6

 37.1

4. Retirement & Disposal Cost (CD) 15,000 0.8 17,000 0.9

GRAND TOTAL 1,942,112 100.0 1,905,743 100.0

Figure 4.3. Life Cycle Cost Analysis Breakdown. [Adapted from BLAN78.]

 35

sensitivity analysis can be used in conjunction with parametric methods to determine the

sensitivity of the model to input variations. One method of performing such an analysis is

to apply the model to a baseline system configuration. A baseline configuration is an

assumed configuration for the system being evaluated and does not necessarily reflect the

final configuration selected [BLAN78]. The model can be applied multiple times while

varying different key parameters to determine their impact on the results. Variation may

be accomplished by substituting various values for the input parameter(s) under scrutiny

[BLAN78].

 The sensitivity analysis should test those parameters which are directly related to the

high cost categories and the major cost drivers. Blanchard notes some concerns which

must be taken into account when observing the variations which result from a sensitivity

analysis:

 ...the analyst should be concerned not only with the delta effects of these
variations on total life cycle cost, but the degree of variation that can occur
without introducing an unnecessary risk in decisions pertaining to the
selection of alternatives. The degree of variation that can be tolerated will
relate directly to the accuracy of the input data requirements necessary for
the life cycle cost analysis. If the allowable output variation is relatively
small and the input data factors vary over a wide range, then the analyst may
which to expend some additional effort to acquire better input data.
[BLAN78, 98]

 The analyst can conduct a sensitivity analysis on a particular life cycle cost model to

reveal cause and effect relationships, to predict trends, and to respond to "what if"

questions [BLAN78].

 36

Figure 4.4. Sample Analysis Checklist.

A. Assumptions

1. Are all assumptions adequately identified and documented?

2. Do all assumptions avoid treating quantitative or qualitative uncertainties as facts?

3. Are major assumptions reasonable?

B. Alternatives

1. Are all current capabilities adequately considered among alternatives?

2. Have all feasible alternatives been considered?

3. Have the inadequacies of those alternatives which have been rejected been justified and

documented?

C. Documentation

1. Is the study adequately documented?

2. Are facts stated correctly and with proper qualification?

3. Are the applicable references documented?

D. Model relationships

1. Does the model adequately address the problem?

2. Are cost and effectiveness parameters linked logically?

3. Is the model designed in such a manner as to allow for the evaluation of specific elements

of the system independent of other elements?

4. Does the model allow for a timely response?

5. Does the model provide valid (comprehensive) and reliable (repeatable) results?

E. Cost

1. Has the overall cost breakdown structure been defined?

2. Are all cost categories in the cost breakdown structure adequately defined?

3. Are all life cycle costs being considered?

4. Are all cost estimating relationships relevant and realistic?

5. Are variable and fixed costs separately identifiable?

6. Are all cost elements considered?

(a) Feasibility studies

(b) Design and development

(c) Production and test

(d) Installation and checkout

(e) Personnel and training

(f) Technical data

(g) Facility construction and maintenance

(h) Spare/repair parts

(i) Support equipment/tools

(j) Inventory maintenance

(k) Customer support (field service)

(l) Program management

7. Are the cost aspects of alternatives treated in a consistent and comparable manner?

8. Are the cost estimating relationships reasonably accurate?

9. Has the sensitivity of parametric cost estimates been properly addressed through a

sensitivity analysis?

F. Conclusions and recommendations

1. Are the conclusions and recommendations logically derived from the material contained in

the study?

2. Have all the significant ramifications been considered in arriving at the conclusions and

recommendations presented?

3. Are the conclusions and recommendations free of bias?

4. Do the conclusions and recommendations appear to be independent of any external

influences?

5. Are the conclusions and recommendations based on more than insignificant differences?

 37

CHAPTER V - EVALUATION PHASE

 After the completion of the cost breakdown structure, existing life cycle cost tools

must be evaluated in order to determine their ability to calculate accurate life cycle costs.

The cost breakdown structure which was produced by this research indicates that the life

cycle cost model can be partitioned into a hardware subsystem and a software subsystem.

Tools which offer a way of modeling each of these subsystems are currently available.

 The packages which were chosen for study regarding the software subsystem were:

(a) Software Cost Model (SOFTCOST) developed by the National Aeronautics and Space

Administration, and

(b) Before You Leap (BYL) provided by the Gordon Group.

 The tools which were selected for evaluation with respect to the hardware

subsystem were:

(a) Life Cycle Cost Model, Version H (LCCH) provided by the Headquarters Acquisition

Logistics Division of the United States Air Force, and

(b) Programmed Review of Information for Costing and Estimation--Hardware (PRICE

"H") developed by RCA.

 An additional package, designed to estimate overall life cycle costs, was also selected

for evaluation: Life-Cycle Cost Calculator (LCCC) developed at Virginia Polytechnic Institute.

 Each life cycle cost tool will be evaluated with respect to its degree of applicability to

the subsystem which it is intended to model. In order to evaluate the tools associated with

each subsystem, data will be gathered from existing FSI projects and applied to each tool.

The suitability of each tool will be measured by how accurately that tool reflects the actual

results. Those tools which are deemed to be less suitable will be examined to determine if

their accuracy can be improved by minor modifications. Tools which cannot be acquired,

or which have major operational errors, cannot be thoroughly evaluated and thus will be

dropped from consideration.

 38

 Software Costing Tool Evaluation

 Life cycle cost tools are currently available to assist in the estimation of the time and

costs involved in a software project. Those packages which were selected for evaluation

are:

(a) Software Cost Model (SOFTCOST) developed by the National Aeronautics and Space

Administration.

(b) Before You Leap (BYL) provided by the Gordon Group.

 In order to evaluate the accuracy of the estimates produced by SOFTCOST and BYL,

FSI provided actual figures pertaining to the duration and expense of a recently completed

software project. The FSI project for which data was gathered involved the development of

software to control the operations of a cluster level controller. This software project

consisted of approximately 120,000 lines of new code, written primarily in the C

programming language. The input data provided for each of the software costing packages

provides specific details about the software project. A listing of that input data is included

in the evaluation of each tool.

SOFTCOST Evaluation

 The Deep Space Network Software Cost and Resource Estimation Model (SOFTCOST) is

designed to estimate the required resources and to provide a schedule for software

development. The model incorporates features from several previously developed

software cost models in order to provide an algorithm which takes into account a variety of

implementation factors relative to project size, organizational environment, system

environment, and project difficulty [TAUS81].

 The SOFTCOST model utilizes features from several existing models. It utilizes

several factors from both the General Research Corporation model and the Watson-Felix

model developed for IBM. It utilizes the "PERT" technique to estimate the anticipated size

and variance of the software being developed. A modification of the Rayleigh-Norden-

Putnam model is used to evaluate resource estimates. Various other models have been

used to provide a guide for model development, including PRICE "S," SLIM, SLICE, as well as

 39

models developed by R. W. Wolverton, TRW (COCOMO), Air Force Electronic Systems

Division, Tecolote, and Aerospace Corporation.

 SOFTCOST measures lines of code in kilo-source lines of executable code, or KSLEC. A

source line of executable code is defined by SOFTCOST to be a source language statement

occupying one physical line in the source file that results in the generation of object code,

the reservation of storage, or the definition of data types. Comments are excluded.

 Model outputs include estimates and variance values for project size, staff

productivity, effort, probable duration, recommended staff level, the amount and cost of

documentation, and required computer resources (Figure 5.1). The user is required to

evaluate the resulting values and then to enter risk-biased values for effort, duration, and

staffing. The model evaluates those values for reasonableness, and determines a

confidence level for the associated estimates. The model is also capable of producing

complete scheduling data, including a PERT chart with subtask efforts, durations, and

precedences (Figure 5.2) as well as a Gantt chart of planned activities (Figure 5.3). It

applies the estimated effort, staff, and duration to a standard Work Breakdown Structure

(WBS) developed for Deep Space Network software tasks, and produces a task plan to be

used at the initial system planning, software implementation planning, or software

maintenance planning stages of a project. Samples of the various types of output are

included in this evaluation.

Type of Test

 The SOFTCOST program received as input a set of parameters which were derived

from a recent FSI software project. Those parameters can be seen in Figure 5.1.

Test Goals

 SOFTCOST produces an estimate of project duration and required staff. It was hoped

that SOFTCOST, when provided with the actual data, would produce estimates which would

approximate the actual values for duration, 24 months, and staff, 8 team members.

SOFTCOST Results

 When the actual FSI data was applied to SOFTCOST, the results failed to approximate

the actual values. Both the estimate for duration and the estimate for staff were greater

 40

than the actual values. SOFTCOST estimated that 9.3 team members would be required

with a project duration of 40.3 months, as seen in Figure 5.1. After producing its estimates,

the model requests risk-biased values for duration and staffing. The model concluded that

with the data set provided by FSI the confidence level of completing the project with eight

members in 24 months was 0%. Clearly, the model failed to produce estimates which

reflected FSI's performance figures.

 In an attempt to isolate the cause of the model's failure to perform as desired, a

substitute data set was provided. This substitute data set was designed to provide a "best-

case" scenario while producing the actual number of lines of source code. Improvements in

the model’s performance would indicate that further testing of this data set would provide

insight into the sensitivity of the model to specific parameters. The next step in the testing

procedure would be to alter the parameters one by one in an attempt to determine which

parameter or parameters were causing the disparity between the model's estimates and

the actual figures. SOFTCOST is designed so that for each multiple choice query the first

response decreases productivity, the second has no effect, and the third increases

productivity. Based on that fact, the "best-case" data set was structured so that every

multiple choice query was provided with the third selection. This data set can be seen in

Figure 5.4. Even when provided with a data set designed to improve the estimates, Figure

5.4 shows that the model did produce an accurate estimate for staff size, 8 team members,

but the estimate for duration, 37 months, was still inaccurate. These estimates were an

improvement, but not as great an improvement as expected. In addition, when provided

with the risk-biased values of 8 team members and a duration of 24 months, the model still

produced a low confidence level, only an 11%. It was concluded from these results that the

modification of a limited subset of the model's productivity parameters would not be

sufficient to calibrate the model's estimates.

 Finally, the estimate of staff productivity produced by SOFTCOST was tested to

determine if it remains constant over a particular set of parameters if the lines of code are

varied. Staff productivity is the number of lines of code each staff member can produce per

month, and is based on the relationship of total lines of code divided by the product of the

number of staff members multiplied by the project duration. The staff productivity

associated with the FSI project is 625 SLEC/staff-month. Despite varying the lines of code

 41

from 1 line to 200,000 lines, the staff productivity estimate remained constant at 324

SLEC/staff-month. This indicates that SOFTCOST's estimate for staff productivity is based

only on the parameters and is independent of the amount of code involved in the project.

In addition, the estimate is far less than the actual lines of code produced by each individual

working on the FSI project. The results of these tests are shown in Figure 5.5. Extensive

effort was devoted to altering the model's productivity parameter set, but the proper

combination of modifications to produce more accurate estimates could not be isolated.

Conclusions

 The failure of SOFTCOST to produce estimates which accurately reflect FSI's

performance can be attributed to several factors. Developed for use by NASA, SOFTCOST

reflects NASA's more extensive planning requirements, coding differences, and enforced

adherence to standards such as the Information System Life-Cycle and Documentation

Standards release 4.3 developed under the direction of NASA's Software Management and

Assurance Program. These standards are intended to provide a systematic, NASA-wide

structure for documenting software development projects. The standards are supported

by NASA Data Item Descriptions (DIDS). Each DID outlines a document, such as the

Requirements Specification, required for quality software planning and development.

 Another factor which might contribute to unexpectedly high estimates is the

difference in the level of programmers anticipated by SOFTCOST and utilized by FSI. The

FSI cluster level controller project utilized only graduate-level programmers, in most cases

computer science doctoral students who had already obtained their Master's Degree in

Computer Science. In addition, those students had at their disposal a faculty of computer

science professionals with years of computer science knowledge and experience. While the

programmers retained by NASA and familiar to the developers of SOFTCOST are no doubt

competent and highly skilled, it can be theorized that their abilities are not on an

equivalent level with those at FSI.

 Furthermore, while the definition of lines of code does not include comments, the

estimate for duration must include the time required to comment the source code, due to

the extensive documentation required by NASA standards. Extensive commenting

increases the duration of a project by reducing staff productivity, i.e., the lines of code

 42

generated by each team member, because the time spent writing comments is time which

cannot be spent writing code. In addition, decreasing the productivity of each team

member increases the number of team members required to complete a project within a

specified time period. Therefore, if the extent to which a program is commented differs

greatly between NASA code and FSI code, that could contribute to the higher estimates for

duration and staffing produced by SOFTCOST.

Decision

 Based upon the results of the tests conducted on SOFTCOST, it was decided to reject

this package. Several factors contributed to this decision, including inaccurate estimates, a

difficult interface, and failure to consider the entire software life cycle.

 As discussed extensively above, the estimates produced by SOFTCOST do not

accurately reflect the demonstrated performance by FSI programming teams. In addition,

attempts to locate and correct the causes of these inaccuracies were unsuccessful.

Although the alteration of the productivity parameters is not extremely difficult, it was

concluded that additional effort directed in this area would not be profitable due to the

repeated failure of the model to approximate the actual figures. Indications are that

wholesale changes in the productivity parameters would be required, altering the entire

parameter set upon which the model is based.

 The user interface consists of a sequential series of prompts for values pertaining to

the various parameters. Once the user has hit the enter key after entering a value, that

value cannot be changed except by restarting the program and reentering all values again.

In fact, whenever the user wishes to change one or more parameters in order to test

scenarios on a "what-if" basis, the entire model has to be rerun. The interface is not user

friendly, and flexibility does not appear to have been a factor in its design.

 Additionally, SOFTCOST fails to take into account any maintenance activities which

follow the software development phase. This is a serious limitation if the entire life cycle of

a software project is of interest.

 The conclusion of this research is that SOFTCOST is not a suitable software costing

model for use in this life cycle costing model.

 43

Before You Leap Evaluation

 Before You Leap (BYL) is an automated software cost modeling tool developed by the

Gordon Group. BYL is a knowledge-based program designed to provide estimates of the

duration, the number of delivered source instructions, and the average number of

personnel required to plan, complete, and maintain any software project.

 BYL incorporates two major modeling subsystems: an advanced implementation of

the Construction Cost Model (COCOMO) algorithms developed by Boehm and other

researchers at TRW, and Function Point Analysis. The COCOMO model is considered to be

an excellent approach to synthesizing project scheduling and staffing. The Function Point

Analysis (FPA) subsystem contains a very powerful and flexible method for measuring and

estimating delivered source instructions. The merging of these two subsystems into a

single software cost modeling system provides wide ranging capabilities such as the ability

to determine the effect on a project schedule if an alternative compiler is utilized.

 Before You Leap is a knowledge-based system which utilizes fuzzy logic. The User's

Guide indicates that:

...BYL makes its estimates for effort, schedule, cost, productivity, and other
values by drawing upon a knowledge base derived from over 150 project-
years of software development history. This has been supplemented with
additional studies of complete software life-cycles that provide scores of
extra project-years to the knowledge base. The overall knowledge base was
developed from a broad variety of projects that use an equally wide range of
compilers, host environments, standards, and practices. All of this was done
to ensure that BYL is applicable to any organization, regardless of the
computer used, the application type, or any other identifiable factor.
[GORD87, 35]

 In addition, BYL allows the knowledge base to be modified so that it reflects the

demonstrated productivity and abilities of a particular organization. This is accomplished

simply by entering the cost driver values and the sizing estimates for one or more

completed projects. According to the User's Guide, doing so:

...automatically calibrates the basis of the estimates: as more actuals are
entered, the overall reliability of calibrated estimates increases, effectively
expanding the knowledge base while biasing it towards the demonstrated
capabilities of the organization. [GORD87, 35]

 44

 BYL considers the software life cycle to begin with the Preliminary Planning and

Requirements Phase, to continue through the Design, Programming and Integration and

Test Phases, and to conclude with the Software Maintenance Phase.

 BYL's measurement of lines of code is KDSI, or thousands of delivered source

instructions. This refers to any line of source text regardless of the number of actual

instructions on that line. The definition of KDSI excludes comments as well as the lines of

code which make up any undelivered support software [SOMM89].

 BYL provides a highly interactive environment. The instantly updated screens allow

the user to view the various trade-offs offered by different development scenarios. BYL's

interactive environment allows the user to perform sensitivity analyses on many different

levels. This allows the comparison of different software project scenarios on a "what if"

basis. Options exist to allow the user to move among three separate sets of data, and

extend the ability to perform sensitivity analyses by allowing the user to examine multiple

scenarios. As estimates are made in one data model, other data models can be viewed in

order to perform comparisons.

 BYL provides a context sensitive help facility. Help is provided in the form of pop-up

screens, which can be viewed during the course of estimating a software project. Help

screens can be viewed from any screen and at any time.

 BYL produces software development estimates pertaining to the expected effort,

schedule, cost, productivity, and staffing requirements for the project. These estimates

range from the initiation of software development through the integration and testing of

the software. The software maintenance estimates provided by BYL encompass expected

effort, cost, productivity, and staffing requirements for the project from the point at which

development is complete through the operational life of the software.

 BYL's output can take the form of graphs or reports. BYL provides the capability of

producing pie charts, horizontal bar graphs, and vertical stacked bar and side bar graphs.

BYL provides several reports pertaining to projected costs, manpower requirements, and

scheduling for a software project. The available reports include the Cost Driver Report

(Figure 5.6), the Maintenance Report (Figure 5.7), the Phase Distribution Report (Figure

5.8), and the Life-Cycle Report (Figure 5.9). The Cost Driver Report lists the development

cost drivers and shows the sizing estimates for the current model. The Maintenance Report

 45

lists the maintenance cost drivers and the sizing estimates for the current model. The

Phase Distribution Report includes estimates for effort, scheduling, and staffing across the

three main phases of software development, and assists in forecasting manpower and

scheduling requirements. The Life-Cycle Report summarizes the estimates for effort,

scheduling, and staffing for the software project through all phases of the software life-

cycle, and assists in forecasting manpower, scheduling, and budget requirements.

Additional reports which are included are the Aggregate Activity Report (Figure 5.10), the

Cash Flow Report (Figure 5.11), and the Function Point Report (Figure 5.12).

Type of Test

 The same data set which was applied to SOFTCOST was also applied to BYL. Those

parameters can be seen in the attached BYL Cost Driver Report, Figure 5.6.

Test Goals

 Like SOFTCOST, BYL produces an estimate of project duration and required staff. It

was hoped that these estimates, when based on the actual data, would approximate the

actual values for duration, 24 months, and staff, 8 team members.

BYL Results

 The default estimates produced by Before You Leap differ greatly from the project

actuals provided by FSI. In fact, the initial estimates of a 21.5 month duration and a 21.73

member staff were even less accurate than those produced by SOFTCOST. However, when

estimates were based on the actual FSI results, the model produced calibrated results

which were identical to the actuals. Due to the fact that the only FSI project providing

historical background was the same project being examined, the calibrated results are

inconclusive. However, if the knowledge base can indeed be biased by historical FSI data

entered into the model, then data from additional FSI projects will train the model to

produce calibrated estimates which accurately reflect the programming performance

demonstrated by FSI.

 46

Conclusions

 While a single test set did not make it possible to verify the software's claims that it

has the capability to tailor itself to a specific organization, limited testing indicated that it

did, indeed, calibrate itself to provide estimates which reflected actual FSI costs. Of course,

it can only reflect the performance of FSI programming teams as long as that performance

remains relatively consistent.

 Before You Leap appears to be a flexible and useful tool which should be investigated

thoroughly by entering several additional actual projects and observing the results. It is

anticipated that the figures related to project duration, staffing, and cost can be biased to

more accurately reflect actual values.

 Before You Leap is not without its drawbacks. The ease with which Before You Leap

can be utilized is greatly enhanced by an understanding of the COCOMO model. Although

both the help facility and the documentation provided with BYL explain the various

parameters thoroughly, general knowledge of the COCOMO model is helpful. Detailed

information about the COCOMO model is available in Boehm's text, and less thorough

treatments are presented in many software engineering texts such those by Sommerville

and Pfleeger [BOEH81; SOMM89; PFLE87].

 Furthermore, the COCOMO model itself has some disadvantages. As discussed

previously, undelivered support software is not reflected in the actual lines of code. In

addition, some parameters are included to accommodate characteristics of computer

systems in the 1970's, the time during which the model was developed. For example, the

parameter TURN, computer turnaround time, reflects batch processing constraints which

do not pertain to interactive systems or individual workstations. Other parameters are not

clearly explained, such as TIME and STOR, which reflect the percentage of available

execution time and main storage which is used by all software which is executing

concurrently.

 Another shortcoming is that BYL assumes that every organization involved in

software development operates in a software engineering environment. This requires

formal quality assurance, configuration management, test and evaluation, and verification

and validation. In addition, BYL dictates the number of team members involved in product

 47

design, programming, requirements analysis, configuration management, quality

assurance, verification and validation, testing and evaluation, etc. While software

engineering techniques are desirable, it is unreasonable to expect that every organization

involved in software development utilizes such techniques or dedicates staff to every

position specified by BYL.

 Finally, BYL lacks an option to print the graphs. Although several types of graphs can

be displayed on the screen, there is no feature which allows those graphs to be printed.

 However, the advantages of Before You Leap far outweigh the disadvantages. Unlike

SOFTCOST, BYL has an excellent interface, the parameter values can be altered and the

results can be observed immediately, and it is intended for commercial applications. The

Function Point Analysis feature for estimating lines of code is not currently needed by FSI,

but is a useful feature which should be investigated more thoroughly. Before You Leap has

the potential to be an extremely useful package for any organization which performs

extensive software development.

Decision

 After testing Before You Leap, the decision was made to accept the package

conditionally. None of the test results contradicted the claims made in the BYL

documentation that the knowledge base can be biased towards the capabilities of an

organization. This lends credence to the assumption that the package can be adapted to

provide relatively accurate estimates for the software subsystem of the embedded

controller life cycle model.

Hardware Costing Tool Evaluation

 A variety of life cycle cost tools is available to assist in the estimation of the time and

costs involved in hardware projects. The difficulty associated with hardware costing tools

is the lack of general purpose tools. Most of the tools in use are special purpose tools which

are very application specific. Those packages which were selected for evaluation are:

(a) Life Cycle Cost Model, Version H (LCCH) provided by the United States Air Force.

 48

(b) Programmed Review of Information for Costing andEstimation--Hardware (PRICE

"H") developed by RCA.

 Because of the lack of availability of general purpose tools, the evaluation approach

was to first determine if either of these packages could be used for cost estimation of the

hardware portion of the embedded controller project. Only after establishing their

applicability would data be gathered with which to test the packages. As will be detailed in

the individual evaluations, however, it was determined that no further study of either of the

tools was necessary.

Life Cycle Cost Model, Version H Evaluation

 Life Cycle Cost Model, Version H, (LCCH) release 1.3 was obtained from the

Headquarters Acquisition Logistics Division (AFLC) of the United States Air Force. It was

acquired in order to investigate the possibility that it could serve as a general life cycle

costing tool for the hardware subsystem of the life cycle cost model for an embedded

controller.

 LCCH documentation refers to the model as both a logistics support model and an

accounting model. It is a modification of the LCC-2A model, which is an enhanced version

of the LCC-2 model, a revision of the original LCC model designed for Air Force use. Each of

these life cycle cost models was designed to estimate the costs associated with acquiring

and supporting an avionics system. An example of avionics spares for which the system is

intended to handle include receivers, receiver interfaces, and antenna couplers.

 LCCH can perform cost comparisons for use in the selection of hardware

mechanization alternatives as well as in the evaluation of alternative maintenance plans for

the system. The model does not utilize a work breakdown structure for a system

development phase, but instead models costs based on firm bid prices for the acquisition of

prime hardware, spares, support equipment, etc. [GATE76].

 The fundamental entity in this particular life cycle cost model is the avionics system

under investigation. That avionics system is a collection of hardware and associated

software whose purpose is to perform specific functions in the unit in which it is installed.

The life cycle cost is partitioned into acquisition cost and operation and maintenance cost.

As indicated previously, the model is intended not only to perform cost estimation, but to

 49

assist in logistics support planning as well. John Huff, an Operations Research Analyst with

the AFLC, referred to the model as being primarily a logistics support model [HUFF91]. The

extensive logistics support capabilities include costing for prime hardware, support

equipment, initial spares, flight line maintenance, base level maintenance, government

depot level maintenance, packing and shipping for contractor depot level maintenance, and

support equipment maintenance.

Type of Test

 Before performing extensive data gathering for the hardware subsystem of the

embedded controller project, an attempt was made to determine the probability that the

LCCH model would be applicable to that subsystem. This process involved discussing the

model with Air Force representatives, examining the documentation which accompanied

the model, and viewing the implementation of the model itself.

Test Goals

 Air Force representatives expressed doubts that this model would prove to be useful

for the intended application [HUFF91]. The goal of the testing was to verify the accuracy of

their reservations. If the model was determined not to be applicable, then further testing

would be unnecessary. Otherwise, testing would be conducted using actual data gathered

from an FSI project.

Conclusions

 The fact that LCCH is a specific life cycle cost model intended for use with avionics

systems severely limits its general usefulness. Although spares lists do include such items

as central processors, control units, power supplies, memory units, and arithmetic units,

these items are referred to as part of a much larger avionics subsystem. Because LCCH was

specifically "developed to evaluate the combined costs of acquiring an avionics system and

supporting it over its operational life" [GATE76,1-1], the model has a limited scope, and

therefore is not applicable to the embedded controller project. Furthermore, LCCH

documentation does not indicate the built-in flexibility required to adapt the model to

provide costing estimates for the hardware subsystem of an embedded controller project.

 50

Decision

 Based on the test results, the decision was made to reject the LCCH model as a

potential subsystem for the embedded controller project.

PRICE "H" Evaluation

 The Programmed Review of Information for Costing and Estimation (PRICE) model

was cited by multiple sources as an excellent life cycle cost tool. Both an "H" model for

hardware costing and an "S" model for software costing have been developed. However,

neither a copy of the PRICE "H" model nor pertinent documentation were available for

evaluation.

 PRICE "H" is a proprietary model developed by the RCA Corporation to estimate the

costs associated with hardware development. PRICE "H" is essentially a parts count model

[GRIM74]. It requires very specific details about the hardware and the production

program, but provides a prediction "which seems to be correct within plus or minus five

percent of the actual cost" [GRIM74, 507]. The PRICE "H" model has been used extensively

by the United States Air Force Avionics Laboratory for avionics hardware development and

production [FERE74].

Type of Test

 Like the testing process associated with LCCH, an evaluation of the model's

applicability to the hardware subsystem of the embedded controller project was performed

prior to conducting extensive data gathering for that subsystem. Because RCA requires a

substantial licensing fee before providing copies of the software, the model was not

available for evaluation. Although this prevented study of the model, it was decided to

examine RCA documentation in an attempt to learn more about PRICE "H."

Test Goals

 The goal of the testing process was to determine if RCA documentation indicated if

PRICE "H" is applicable to the hardware subsystem of the embedded controller life cycle

model. Because the actual model was not available, further testing was not possible.

 51

PRICE "H" Results

 According to John Huff of AFLC, because PRICE "H" is a proprietary model, it is

essentially a "black box" [HUFF91]. Various parameters are input, those numbers are

manipulated, and results are produced. Details about specific calculations leading to those

results are not available.

 Not only was the PRICE "H" model not available for examination, but all attempts to

obtain pertinent documentation were unsuccessful. Consequently, the evaluation process

could not be conducted.

Decision

 Although PRICE "H" is reportedly a very accurate hardware costing tool, its licensing

fee discouraged attempts to acquire it for study. In addition, attempts to acquire

documentation were unsuccessful. As specified earlier, tools which cannot be acquired

cannot be thoroughly evaluated. For that reason, the PRICE "H" model was dropped from

consideration.

 Overall Costing Tool Evaluation

 General purpose tools which are capable of determining life cycle costs for an overall

project are not widely available. Such tools are designed to calculate life cycle costs from

the project's inception to its final retirement and disposal.

 Only a single tool was chosen for evaluation in this category: Life-Cycle Cost Calculator

(LCCC) provided by Virginia Polytechnic Institute and State University.

 Life-Cycle Cost Calculator (LCCC)

 The Life-Cycle Cost Calculator program, LCCC, was developed at Virginia Polytechnic

Institute and State University. It is a complex, mathematics intensive program developed

to allow the user to input a previously designed cost breakdown structure (CBS), enter cost

data into the CBS, and determine overall life cycle cost. Both the CBS and the cost data can

be modified, and the model can be displayed in either summary or detailed format.

Extensive graphics options are provided. The total life span of the system under study, the

interest rate, and the inflation rate are all factored in [VIRG91].

 52

 The LCCC program consists of two screens, the Cost Summary screen (Figure 5.13)

and the Cost Category screen (Figure 5.14). This division permits the user to view the

overall distribution of the cost breakdown structure, or to examine the depths of any

category, as desired. Annual data can be reviewed for any category.

Type of Test

 Before undertaking an effort to gather accurate cost data for an entire FSI project, it

was decided to first determine if the package was fully functional and to confirm that the

results produced were in line with the type of results required for the embedded controller

project. It was determined that if the package satisfied these conditions, then data would

be gathered and applied to the model.

LCCC Results

 LCCC does not work properly due to the presence of errors. The model could not be

properly evaluated because a software error prevented the cost breakdown structure and

cost data from being saved. Due to the presence of program flaws, the model could not be

thoroughly tested. Consequently, the additional effort of gathering overall cost data proved

to be unnecessary.

Conclusion

 When LCCC is debugged and fully capable of performing the tasks specified in its

documentation, it should prove to be a useful software package. Its ability to accept a cost

breakdown structure and associated data indicate that it would be a useful tool for the

embedded controller life cycle model.

 LCCC does have many drawbacks. Aside from the coding error, the documentation

does not always reflect the actual software. The interface, while relatively easy to use, is

not intuitive and requires some experience before the user is comfortable with it. For

example, data entry is allowed only in specific areas of the screen, and if an entry is not

active the cursor remains outside a valid data field. Pressing any key, other than a function

key or an active navigation key, has no effect, and gives the appearance that the system has

been locked down by the program. In addition, the program is capable only of displaying

the graphical representations of the data, and fails to provide an option to print graphs.

 53

Decision

 Because the earlier phases of this research focused on the development of a cost

breakdown structure for an embedded controller, this package seems to be the ideal

implementation of that research. Unfortunately, this assumption could not be tested due to

errors present in the software. Although the developer has been notified of the errors, a

modified version could not be acquired in time to be considered during the course of this

research. It is anticipated that the debugged version will prove to be a valuable life cycle

cost tool, and should be investigated further in future research.

 54

TITLE: FSI Cluster Controller
ECR/ECO:
SUBSYS:

CDE:
PROG. ID:
Model Data Version 3.0 6-02-81

Answer the following items to the best of your estimation.

1. How much new code is to be produced (completely new modules)?

Maximum value, kilo-lines executable source (99% confidence level)?
Expected value, kilo-lines executable source?
Minimum value, kilo-lines executable source (99% confidence level)?

2. How much code exists in modules requiring modification?
Maximum value, kilo-lines executable source (99% confidence level)?

8. Expected percentage of code to be developed actually delivered (0-90, 91-99, 100)?

9. How many different kinds of input/output data items per 1000 lines of new or modified
code (>80, 16-80, 0-15)?

10. Overall complexity of program and data base architecture (high, medium, low)?

11. Complexity of code logical design (high, medium, low)?

12. What percent of the programming task is in Assembly language?

13. What percent of the new or modified code must be storage-optimized?

14. What percent of the new or modified code must be timing-optimized?

15. What percent of the total programming task is 'easy'?

16. What percent of the total programming task is 'hard'?

17. When is work to start, on the (FRD/FDD, SRD, SDD)?

18. What percent of the total program requirements will be established and stable before
design, and will not be altered before delivery?

19. What percent of the requirements are likely to change slightly before delivery, but will do
so under baseline change control?

20. What percent of the requirements are likely to change more drastically before delivery,
but will do so under baseline control?

21. Complexity of program functional requirements (high, medium, low)?

22. Expected user involvement in requirements definition (much, some, none)?

23. Customer experience in application area (much, none, some)?

24. Customer/Implementer organizational interface complexity (high, normal, low)?

25. Interfaces with other SW development projects or organizations (many, few, none)?

150
120
100

0

91-99

16-80

HIGH

HIGH

10

30

60

10

90

FRD/FDD

30

10

60

HIGH

SOME

SOME

HIGH

FEW

 Figure 5.1. SOFTCOST Output--FSI Data.

 55

26. Efficiency of implementing organization (poor, ok, good)?

27. Overall implementation personnel qualifications and motivation (low, average, high)?

28. Percentage of programmers doing functional design who will also be doing development
(<25, 25-50, >50)?

29. Previous programmer experience with application of similar or greater size and
complexity (minimal, average, extensive)?

30. What is the average staff experience, in years, obtained from work similar to that required
in the task being estimated?

31. Previous experience with operational computer to be used (minimal, average, extensive)?

32. Previous experience with programming language(s) to be used (minimal, average,
extensive)?

33. Use of top-down methodology (low, medium, high)?

34. Use of structured programmer team concepts (low, medium, high)?

35. Use of Structured Programming (low, medium, high)?

36. Use of design and code inspections (low, QA, peer)?

37. Classified security environment for computer (yes, , no)?

38. Hardware under concurrent development (much, some, none)?

39. Percent of work done at primary development site (<70, 70-90, >90)?

40. Development computer access mode (remote, scheduled, demand)?

41. Percent of development computer access availability (<30, 30-60, >60)?

42. Quality of SW development tools and environment (poor, ok, good)?

43. Maturity of system and support software (buggy, ok, good)?

44. Overall adverse constraints on program design (severe, average, minimal)?

45. Is the program real-time, multi-task (chiefly, some, no)?

46. SW to be adaptable to multiple computer configurations or environments (yes.. no)?

47. Adaptation required to change from development to operational environment (much,
some, minimal)?

POOR

AVERAGE

>50

MINIMAL

5

MINIMAL

AVERAGE

LOW

LOW

MEDIUM

PEER

NO

MUCH

>90

DEMAND

30-60

POOR

OK

SEVERE

CHIEFLY

YES

SOME

 Figure 5.1. (continued)

 56

Estimated Overall Parameters:
 =average value
 +1-sigma -1-sigma
Adjusted Lines of code= 121667 SLEC, +/- 9365 SLEC
 131031 112302
Effort=375.5 person-months
652.9 216.0
Staff productivity= 324 SLEC/staff-month
 563 186
Duration= 40.3 months
 49.0 33.1
Avg. Staff= 9.3
 16.2 5.4
Documentation= 6241 pages $187.2K
 7564 5150 $226.9K $154.5K
Computer CPU time= 5535 hours $0.0K
 8354 3667 $0.0K $0.0K

Use these figures to arrive at Effort, Duration, and Staffing
requirements. Include factors to provide acceptable risk
and confidence levels.

Values specified are:
 Kilo-lines of code: 121.67
 Effort (person-months): 192.0
 Duration (months): 24.0
 Average staff (persons): 8.0

 For the numbers entered, a reasonableness check indicates that
the average project would produce 54356 lines of code, using 192 staff-months
of resources and 24 months of duration, with an average staff of 8 persons,
for a productivity of 283 SLEC/staff-month.

 The level of confidence in delivering 121667 lines of code,
on-time and within resources= 0 %.

Is output to be saved in a file? YES

Name of output file to be created: FSI1

Schedule start date: 01SEP89

Select desired outputs and output media. Defaults are 1B, 3B. Choices are:

 1=Gantt Chart A=file
 2=PERT data, 132 width B=line printer
 3=PERT data, 80 width
 4=PERT output interface file only

Enter 0 (zero) if none are wanted.

CHOICE(S): 1B,3B

 Figure 5.1. (continued)

 57

WBS Version 3.0 6-03-81 PAGE 1

 TITLE: FSI Cluster Controller CDE:

ECR/ECO: PROG. ID.:

SUBSYS: STATUS AS OF: 31OCT91

 CODE TASK DUR EFF E-START L-FINSH FLT

 0. START 0.0 0.0 1SEP89 1SEP89 0

 1. Mgt Tasks & Milestones 0.0 0.0 13OCT89 13OCT89 451

 1.1 CDE 30.0 153.6 1SEP89 13OCT89 451

 2. SW Planning and Reqs 0.0 0.0

13NOV89

13NOV89
 24

 2.1 SRD 0.0 0.0 1NOV89 1NOV89 0

 2.1.1 Write & Release SRD 43.0 218.9 1SEP89 1NOV89 0

 2.1.2 Software Cost Model 2.0 11.5 1SEP89 5SEP89 41

 2.2 Level D Review 8.0 38.4 1NOV89

13NOV89
 0

 3. SW Design Def & Arch 0.0 0.0 6FEB90 6FEB90 0

 3.1 SDD 0.0 0.0 11JAN90 11JAN90 0

 3.1.1 Write & Release SDD
 43.0 218.9

13NOV89
 11JAN90 0

 3.1.2 Detailed WBS
 19.0 96.0

13NOV89
 8DEC89 24

 3.2 SOM, First Draft
 15.0 76.8

13NOV89
 4DEC89 38

 3.3 Devel Test Plan (DTP) 10.0 49.9 11JAN90 25JAN90 0

 3.4 Level E Review 8.0 38.4 25JAN90 6FEB90 0

 4. SW Detail Design & Prod
 0.0 0.0

22NOV90

22NOV90
 0

 4.1 SSD (Upgrade SDD)
 0.0 0.0

12NOV90

12NOV90
 0

 4.1.1 Write Sects 1,2,3 8.0 38.4 6FEB90 16FEB90 186

 4.1.2 Write Section 4 23.0 115.2 6FEB90 9MAR90 0

 4.1.3 Write Section 5
 53.0 268.8 9MAR90

23MAY90
 114

 4.1.4 Write Section 6
 4.0 19.2

23MAY90

29MAY90
 114

 4.1.5 Write Section 7 15.0 76.8 6FEB90 27FEB90 179

 4.1.6 Edit & Distrib SSD
 5.0 23.0 5NOV90

12NOV90
 0

 4.2 SOM (Upgrade Draft SOM)
 38.0 192.0 6FEB90

30MAR90
 161

 4.3 Prod, Integ, & Test 0.0 0.0 5NOV90 5NOV90 0

 4.3.1 Function 1 0.0 0.0 5APR90 5APR90 0

 4.3.1.1 Mod Prod/Integ
 15.0 76.8 9MAR90

30MAR90
 0

 4.3.1.2 Function 1 Demo
 4.0 19.2

30MAR90
 5APR90 0

 4.3.2 Function 2 0.0 0.0 2MAY90 2MAY90 0

 4.3.2.1 Mod Prod/Integ 15.0 76.8 5APR90 26APR90 0

 4.3.2.2 Function 2 Demo 4.0 19.2 26APR90 2MAY90 0

 4.3.3 Function 3
 0.0 0.0

29MAY90

29MAY90
 0

 58

 4.3.3.1 Mod Prod/Integ
 15.0 76.8 2MAY90

23MAY90
 0

 4.3.3.2 Function 3 Demo
 4.0 19.2

23MAY90

29MAY90
 0

 4.3.4 Function 4 0.0 0.0 25JUN90 25JUN90 0

 4.3.4.1 Mod Prod/Integ
 15.0 76.8

29MAY90
 19JUN90 0

 4.3.4.2 Function 4 Demo 4.0 19.2 19JUN90 25JUN90 0

 4.3.5 Function 5 0.0 0.0 20JUL90 20JUL90 0

 4.3.5.1 Mod Prod/Integ 15.0 76.8 25JUN90 16JUL90 0

 4.3.5.2 Function 5 Demo 4.0 19.2 16JUL90 20JUL90 0

 4.3.6 Function 6
 0.0 0.0

16AUG90

16AUG90
 0

 4.3.6.1 Mod Prod/Integ
 15.0 76.8 20JUL90

10AUG90
 0

 Figure 5.2. SOFTCOST Pert Chart.

 59

WBS Version 3.0 6-03-81 PAGE 2

 TITLE: FSI Cluster Controller CDE:

 ECR/ECO: PROG. ID.:

SUBSYS: STATUS AS OF: 31OCT91

 CODE

 TASK DUR EFF E-START L-FINSH FLT

 4.3.6.2 Function 6 Demo
 4.0 19.2

10AUG90

16AUG90
 0

 4.3.7 Function 7 0.0 0.0 12SEP90 12SEP90 0

 4.3.7.1 Mod Prod/Integ
 15.0 76.8

16AUG90
 6SEP90 0

 4.3.7.2 Function 7 Demo 4.0 19.2 6SEP90 12SEP90 0

 4.3.8 Function 8 0.0 0.0 9OCT90 9OCT90 0

 4.3.8.1 Mod Prod/Integ 15.0 76.8 12SEP90 3OCT90 0

 4.3.8.2 Function 8 Demo 4.0 19.2 3OCT90 9OCT90 0

 4.3.9 Function 9 0.0 0.0 5NOV90 5NOV90 0

 4.3.9.1 Mod Prod/Integ 15.0 76.8 9OCT90 30OCT90 0

 4.3.9.2 Function 9 Demo 4.0 19.2 30OCT90 5NOV90 0

 4.4 STT, Working Draft 15.0 76.8 6FEB90 27FEB90 179

 4.5 Special Tasks 0.0 0.0 26FEB90 26FEB90 185

 4.5.1 Support software 14.0 73.0 6FEB90 26FEB90 185

 4.5.2 Other 8.0 38.4 6FEB90 16FEB90 191

 4.6 Final Demo Test Rvw
 8.0 38.4

12NOV90

22NOV90
 0

 5. Combined Subsys Tests 0.0 0.0 2APR91 2APR91 0

 5.1 Sec 338 Lab CST
 30.0 153.6

22NOV90
 3JAN91 0

 5.2 CTA-21 or SIF CST 30.0 153.6 3JAN91 14FEB91 0

 5.3 DSCC-10/11 CST
 30.0 153.6 14FEB91

28MAR91
 0

 5.4 Preliminary STT
 18.0 92.2

22NOV90
 18DEC90 42

 5.5 Prelim Accept Tests 30.0 153.6 18DEC90 29JAN91 42

 5.6 Acc Readiness Rvw
 3.0 15.4

28MAR91
 2APR91 0

 6. SW Test and Transfer 0.0 0.0 8JUL91 8JUL91 0

 6.1 Complete STT 8.0 42.2 2APR91 12APR91 0

 6.2 Complete SSD 8.0 42.2 2APR91 12APR91 53

 6.3 Acceptance Tests
 23.0 115.2 12APR91

15MAY91
 0

 6.4 Soak Tests
 30.0 153.6

15MAY91
 26JUN91 0

 6.5 Transfer Review 8.0 38.4 26JUN91 8JUL91 0

 6.6 Software Transfer 0.0 0.0 8JUL91 8JUL91 0

 FINISH

 0.0 0.0 8JUL91 8JUL91 0

 Figure 5.2. (continued)

 60

Figure 5.3. SOFTCOST Gantt Chart.

 61

Figure 5.3. (continued)

 62

Figure 5.3. (continued)

F
i
g
u
r
e

5
.
3
.

(
c
o
n
t
i
n
u
e
d
)

 63

Figure 5.3. (continued)

 64

Figure 5.3. (continued)

F
i
g
u
r
e

5
.
3
.

(
c
o
n
t
i
n
u
e
d
)

 65

Figure 5.3. (continued)

F
i
g
u
r
e

5
.
3
.

(
c
o
n
t
i
n
u
e
d
)

 66

TITLE: FSI Data -- Biased CDE:

ECR/ECO: PROG. ID.:

SUBSYS: Date Estimated: 01NOV91

 Model Data Version 3.0 6-02-81

Answer the following items to the best of your estimation.

1. How much new code is to be produced (completely new modules)?

Maximum value, kilo-lines executable source (99% confidence level)? 150

Expected value, kilo-lines executable source? 120

Minimum value, kilo-lines executable source (99% confidence level)? 100

2. How much code exists in modules requiring modification?

Maximum value, kilo-lines executable source (99% confidence level)? 0

8. Expected percentage of code to be developed actually delivered (0-90, 91-99, 100)? 100

9. How many different kinds of input/output data items per 1000 lines of new or modified

code (>80, 16-80, 0-15)?
0-15

10. Overall complexity of program and data base architecture (high, medium, low)? LOW

11. Complexity of code logical design(high, medium, low)? LOW

12. What percent of the programming task is in Assembly language? 10

13. What percent of the new or modified code must be storage-optimized? 30

14. What percent of the new or modified code must be timing-optimized? 60

15. What percent of the total programming task is 'easy'? 10

16. What percent of the total programming task is 'hard'? 90

17. When is work to start, on the (FRD/FDD, SRD, SDD)? SDD

18. What percent of the total program requirements will be established and stable before

design, and will not be altered before delivery?
30

19. What percent of the requirements are likely to change slightly before delivery, but will do

so under baseline change control?
10

20. What percent of the requirements are likely to change more drastically before delivery, but

will do so under baseline control?
60

21. Complexity of program functional requirements (high, medium, low)? LOW

22. Expected user involvement in requirements definition (much, some, none)? NONE

23. Customer experience in application area (much, none, some)? SOME

24. Customer/implementer organizational interface complexity (high, normal, low)? LOW

 Figure 5.4. SOFTCOST Output--Biased Data.

 67

25. Interfaces with other SW development projects or organizations (many, few, none)? NONE

26. Efficiency of implementing organization (poor, ok, good)? GOOD

27. Overall implementation personnel qualifications and motivation (low, average, high)? HIGH

28. Percentage of programmers doing functional design who will also be doing development

(<25, 25-50, >50)? >50

29. Previous programmer experience with application of similar or greater size and complexity

(minimal, average, extensive)? EXTENSIVE

30. What is the average staff experience, in years, obtained from work similar to that required

in the task being estimated? 5

31. Previous experience with operational computer to be used (minimal, average, extensive)? EXTENSIVE

32. Previous experience with programming language(s) to be used (minimal, average,

extensive)? EXTENSIVE

33. Use of top-down methodology (low, medium, high)? HIGH

34. Use of structured programmer team concepts (low, medium, high)? HIGH

35. Use of Structured Programming (low, medium, high)? HIGH

36. Use of design and code inspections (low, QA, peer)? PEER

37. Classified security environment for computer (yes, , no)? NO

38. Hardware under concurrent development (much, some, none)? NONE

39. Percent of work done at primary development site (<70, 70-90, >90)? >90

40. Development computer access mode (remote, scheduled, demand)? DEMAND

41. Percent of development computer access availability (<30, 30-60, >60)? >60

42. Quality of SW development tools and environment (poor, ok, good)? GOOD

43. Maturity of system and support software (buggy, ok, good)? GOOD

44. Overall adverse constraints on program design (severe, average, minimal)? MINIMAL

45. Is the program real-time, multi-task (chiefly, some, no)? NO

46. SW to be adaptable to multiple computer configurations or environments (yes, , no)? NO

47. Adaptation required to change from development to operational environment (much,

some, minimal)? MINIMAL

 Figure 5.4. (continued)

 68

Estimated Overall Parameters:

 =average value

 +1-sigma -1-sigma

Adjusted Lines of code= 121667 SLEC, +/- 9365 SLEC

 131031 112302

Effort=175.0 person-months

304.3 100.7

Staff productivity= 695 SLEC/staff-month

 1208 400

Duration= 30.7 months

 37.4 25.2

Avg. Staff= 5.7

 9.9 3.3

Documentation= 6241 pages $187.2K

 7564 5150 $226.9K $154.5K

Computer CPU time= 5535 hours $0.0K

 8354 3667 $0.0K $0.0K

Use these figures to arrive at Effort, Duration, and Staffing

requirements. Include factors to provide acceptable risk

and confidence levels.

Values specified are:

 Kilo-lines of code: 121.67

 Effort (person-months): 192.0

 Duration (months): 24.0

 Average staff (persons): 8.0

 For the numbers entered, a reasonableness check indicates that

the average project would produce 116601 lines of code, using 192 staff-months

of resources and 24 months of duration, with an average staff of 8 persons,

for a productivity of 607 SLEC/staff-month.

 The level of confidence in delivering 121667 lines of code,

on-time and within resources= 8 %.

Is output to be saved in a file? NO

Name of output file to be created: SCRATCH

Schedule start date: 01SEP89

 Select desired outputs and output media. Defaults are 1B, 3B. Choices are:

 1=Gantt Chart A=file

 2=PERT data, 132 width B=line printer

 3=PERT data, 80 width

 4=PERT output interface file only

Enter 0 (zero) if none are wanted.

CHOICE(S): 0

 Figure 5.4. (continued)

 69

 Figure 5.5. FSI Parameters Applied to SOFTCOST with Varying Lines of Code.

 70

 BYL Cost Driver Report

 ********** SOFTWARE COST MODEL **********
 copyright 1986, Gordon Group

 Description: FSI Sample Data
 Basis of Est.: Calibrated from Actuals; Default Cost Driver Values
 Development Mode: SEMIDETACHED
 Thousands of New Source Instructions (KDSI): 120.00

 Thousands of Adapted Source Instructions (KDSI): 0.00
 Percentage Requiring Design Modification: 0%
 Percentage Requiring Code Modification: 0%
 Percentage Requiring Integration Modification: 0%

 Thousands of Converted Source Instructions (KDSI): 0.00
 Percentage Requiring Design Modification: 0%
 Percentage Requiring Code Modification: 0%
 Percentage Requiring Integration Modification: 0%
 Conversion Analysis and Planning (0-LOW ... 5-HIGH): 0

 PRODUCT ATTRIBUTES
 RELY Required Software Reliability: HIGH
 DATA Database Size: NOMINAL
 CPLX Product Complexity: XHIGH

 COMPUTER ATTRIBUTES
 TIME Execution Time Constraint: HIGH
 STOR Main Storage Constraint: NOMINAL
 VIRT Virtual Machine Volatility: LOW
 TURN Computer Turnaround Time: LOW

 PERSONNEL ATTRIBUTES
 ACAP Analyst Capability: VHIGH
 AEXP Applications Experience: VHIGH
 PCAP Programmer Capability: NOMINAL
 VEXP Virtual Machine Experience: NOMINAL
 LEXP Programming Language Experience: HIGH

 PROJECT ATTRIBUTES
 MODP Use of Modern Programming Practices: HIGH
 TOOL Use of Software Tools: HIGH
 SCED Required Development Schedule: NOMINAL

 OUTPUTS
 EFFORT:
 192.00 man-months

 PRODUCTIVITY:
 625.00 new-equivalent delivered source instructions/man-month

 SCHEDULE:
 24.00 months

 AVERAGE STAFFING:
 8.00 full-time equivalent software personnel, FSP

 Figure 5.6. BYL Cost Driver Report.

 71

 BYL Maintenance Report

 ********** SOFTWARE COST MODEL **********
 copyright 1987, Gordon Group

 Description: FSI Sample Data

 Basis of Estimate: Calibrated from Actuals; Default Cost Driver Values
 Maintenance Mode: SEMIDETACHED
 Thousands of Source Instructions in Product (KDSI): 120.00
 Expected Annual Change Traffic (ACT): 20%
 Equiv. Annual Conversion of Deliv. Source Instr. (KDSI): 24.00
 Expected Operational Product Life (Months): 36

 PRODUCT ATTRIBUTES
 RELY Required Software Reliability: HIGH
 DATA Database Size: NOMINAL
 CPLX Product Complexity: XHIGH

 COMPUTER ATTRIBUTES
 TIME Execution Time Constraint: HIGH
 STOR Main Storage Constraint: NOMINAL
 VIRT Virtual Machine Volatility: LOW
 TURN Computer Turnaround Time: LOW

 PERSONNEL ATTRIBUTES
 ACAP Analyst Capability: VHIGH
 AEXP Applications Experience: VHIGH
 PCAP Programmer Capability: HIGH
 VEXP Virtual Machine Experience: HIGH
 LEXP Programming Language Experience: HIGH

 PROJECT ATTRIBUTES
 MODP Use of Modern Programming Practices: HIGH
 TOOL Use of Software Tools: HIGH
 SCED Required Development Schedule: NOMINAL

 OUTPUTS
 Expected Annual Effort:
 23.66 man-months

 Maintenance Productivity:
 1014.46 changed delivered source instructions/man-month

 Average Maintenance Staffing Requirements:
 1.97 full-time equivalent software personnel, FSP

 Life-Cycle Maintenance Effort:
 70.97 man-months

 Figure 5.7. BYL Maintenance Report.

 72

 BYL Phase Distribution Report

 ********** SOFTWARE COST MODEL **********
 copyright 1986, Gordon Group

 Description: FSI Sample Data
 Basis of Est.: Calibrated from Actuals; Default Cost Driver Values
 PRODUCT SIZE:
 120.00 thousand new-equivalent delivered source instructions
 PROJECT SCHEDULE:
 24.00 months
 ESTIMATED EFFORT:
 192.00 man-months
 Product Integration
 Phase Design Programming and Test

DISTRIBUTION 17.00% 55.25% 27.75%

 Activity percentage

Requirements analysis 12.50 4.00 2.50

Product design 41.00 8.00 5.00

Programming 13.46 56.50 38.83

Test planning 5.96 5.46 3.00

Verification & validation 7.46 8.46 28.58

Project office 10.08 6.04 7.04

Configuration mgmt/QA 2.50 6.50 8.00

Manuals 7.04 5.04 7.04

EFFORT 32.64 MM 106.08 MM 53.28 MM

 Activity man-months

Requirements analysis 4.08 4.24 1.33

Product design 13.38 8.49 2.66

Programming 4.39 59.94 20.69

Test planning 1.94 5.79 1.60

Verification & validation 2.43 8.97 15.23

Project office 3.29 6.41 3.75

Configuration mgmt/QA 0.82 6.90 4.26

Manuals 2.30 5.35 3.75

SCHEDULE 26.92% 44.33% 28.75%

Duration schedule months 6.46 10.64 6.90

AVERAGE STAFFING 5.05 9.97 7.72

Full-time software personnel

Requirements analysis 0.63 0.40 0.19

Product design 2.07 0.80 0.39

Programming 0.68 5.63 3.00

Test planning 0.30 0.54 0.23

Verification & validation 0.38 0.84 2.21

Project office 0.51 0.60 0.54

Configuration mgmt/QA 0.13 0.65 0.62

Manuals 0.36 0.50 0.54

 Figure 5.8. Phase Distribution Report.

 73

 BYL Life-Cycle Report

 ********** SOFTWARE COST MODEL **********
 copyright 1987, Gordon Group

 Description: FSI Sample Data
 Basis of Est.: Calibrated from Actuals; Default Cost Driver Values

 Life-Cycle Effort Distribution Activity Man-Months _
 PRELIMINARY PLANNING & REQUIREMENTS ANALYSIS
 Schedule duration: 5.24 months;

Requirements analysis 6.06

Product design 2.35

Programming 0.80

Test planning 0.53

Verification & validation 0.48

Project office 1.69

Configuration mgmt/QA 0.40

Manuals 0.68

Total Effort 12.98MM

 AGGREGATE SOFTWARE DEVELOPMENT
 Schedule duration: 24.00 months

Requirements analysis 9.66

Product design 24.53

Programming 85.02

Test planning 9.33

Verification & validation 26.64

Project office 13.45

Configuration mgmt/QA 11.97

Manuals 11.40

Total Effort 192.00MM

 SOFTWARE MAINTENANCE
 Operational life: 36 months

 Annually Operational
Life

Requirements analysis 1.43 4.29

Product design 2.84 8.52

Programming 9.70 29.10

Test planning 0.94 2.81

Verification & validation 3.18 9.55

Project office 1.67 5.00

Configuration mgmt/QA 1.42 4.26

Manuals 2.48 7.45

 Annual Effort 23.66MM

 Total Effort 70.97MM

 Total Life-Cycle Effort 275.95MM

 Figure 5.9. BYL Life-Cycle Report.

 74

 BYL Life-Cycle Report

 ********** SOFTWARE COST MODEL **********
 copyright 1987, Gordon Group

 Description: FSI Sample Data
 Basis of Est.: Calibrated from Actuals; Default Cost Driver Values

 Life-Cycle Costs Distribution Current Dollars _
 PRELIMINARY PLANNING & REQUIREMENTS ANALYSIS
 Schedule duration: 5.24 months;

Requirements analysis 32192.53

Product design 6619.19

Programming 1093.40

Test planning 532.00

Verification & validation 952.00

Project office 1902.60

Configuration mgmt/QA 2142.20

Manuals 762.30

Total Cost $ 46196.23

 AGGREGATE SOFTWARE DEVELOPMENT
 Schedule duration: 24.00 months

Requirements analysis 51298.08

Product design 69207.03

Programming 116900.30

Test planning 9333.40

Verification & validation 53272.40

Project office 15133.50

Configuration mgmt/QA 63615.74

Manuals 12823.20

Total Cost $ 391583.64

 SOFTWARE MAINTENANCE
 Operational life: 36 months

 Annually Operational Life

Requirements analysis 7594.07 22782.21

Product design 8008.70 24026.11

Programming 13337.20 40011.59

Test planning 936.46 2809.39

Verification & validation 6367.94 19103.83

Project office 1874.16 5622.47

Configuration mgmt/QA 7541.70 22625.09

Manuals 2794.60 8383.80

Annual Cost $ 48454.83

Total Cost $ 145364.49

 Total Life-Cycle Cost $ 583144.36

 Figure 5.9. (continued)

 75

 BYL Aggregate Activity Report

 ********** SOFTWARE COST MODEL **********
 copyright 1986, Gordon Group

 Description: FSI Sample Data
 Basis of Est.: Calibrated from Actuals; Default Cost Driver Values
 PRODUCT SIZE:
 120.00 thousand new-equivalent delivered source instructions
 PROJECT SCHEDULE:
 24.00 months
 ESTIMATED EFFORT:
 192.00 man-months
 Preliminary Planning &
 Aggregate Requirements Analysis
 Development (not included in Aggregate)

100.00% DISTRIBUTION 7.00%

 Activity percentage

5.03 Requirements analysis 45.08

12.78 Product design 17.46

44.28 Programming 5.92

4.86 Test planning 3.96

13.87 Verification & validation 3.54

7.01 Project office 12.58

6.24 Configuration mgmt/QA 3.00

5.94 Manuals 5.04

192.00 MM

EFFORT
12.98 MM

 Activity man-months

9.66 Requirements analysis 6.06

24.53 Product design 2.35

85.02 Programming 0.80

9.33 Test planning 0.53

26.64 Verification & validation 0.48

13.45 Project office 1.69

11.97 Configuration mgmt/QA 0.40

11.40 Manuals 0.68

100.00% SCHEDULE 21.83%

24.00 Duration schedule months 5.24

 8.00 AVERAGE STAFFING 2.56

 Full-time software personnel

0.40 Requirements analysis 1.16

1.02 Product design 0.45

3.54 Programming 0.15

0.39 Test planning 0.10

1.11 Verification & validation 0.09

0.56 Project office 0.32

0.50 Configuration mgmt/QA 0.08

0.47 Manuals 0.13

 Figure 5.10. Aggregate Activity Report.

 76

 BYL Cash Flow Report

 ********** SOFTWARE COST MODEL **********
 copyright 1986, Gordon Group

 Description: FSI Sample Data
 Basis of Est.: Calibrated from Actuals; Default Cost Driver Values
 COSTS PER EMPLOYEE-TYPE PER MAN-MONTH ******************************

Requirements Analysts : 5313.00

Product Designers : 2821.00

Computer Programmers, Programmer Analysts : 1375.00

Test Planners & Test Engineers : 1000.00

Value Engineers & Product Analysts : 2000.00

Project Office Personnel (non-clerical) : 1125.00

QA Specialists & Config Mgmt/Librarians : 5313.00

Software Manual Writers/Technical Writers : 1125.00

 PHASE DISTRIBUTION OF DEVELOPMENT **********************************
 COSTS PER EMPLOYEE-TYPE
 Product Integration
 Phase Design Programming and Test _
 PHASE COSTS 82906.20 202491.60 106185.84
 Activity costs

Requirements analysis 21677.04 22544.12 7076.92

Product design 37751.75 23940.13 7515.14

Programming 6040.10 82410.90 28449.30

Test planning 1944.80 5790.20 1598.40

Verification & validation 4868.80 17945.20 30458.40

Project office 3702.60 7210.12 4220.77

Configuration mgmt/QA 4335.41 36634.20 22646.13

Manuals 2585.70 6016.72 4220.77

Duration schedule months 6.46 10.64 6.90

Average cost per month 12833.78 19031.17 15389.25

 AGGREGATE DISTRIBUTION OF COSTS ************************************
 Aggregate Preliminary Planning and
 Development Requirements (not in Aggregate) _

 391583.64 COSTS 46196.23

 Activity costs

51298.08 Requirements analysis 32192.53

69207.03 Product design 6619.19

116900.30 Programming 1093.40

9333.40 Test planning 532.00

53272.40 Verification & validation 952.00

15133.50 Project office 1902.60

63615.74 Configuration mgmt/QA 2142.20

12823.20 Manuals 762.30

 24.00 Duration schedule months 5.24
 16315.99 Average cost per month 8816.07
 PROJECTED COSTS **
 Software Development : $ 391584
 Preliminary Planning & Requirements Analysis : $ 46196
 >>> Overall Project Costs : $ 437780

 Figure 5.11. BYL Cash Flow Report.

 77

 BYL Function Point Report

 ********** SOFTWARE COST MODEL **********

 copyright 1986, Gordon Group

Description: FSI Sample Data

FUNCTION COUNT & COMPLEXITY **

Simple

Average

Complex

Unadjusted

Function Points

External Input/Inquiry

5x3 10x4 14x6 139

External Output 5x4 10x5 14x7 168

Logical Internal File 5x7 9x10 11x15 290

External Interface File 4x5 9x7 11x10 193

 Total unadjusted function points: 790

__

 PROCESSING COMPLEXITIES **

 Characteristic Rating Adjustment Factor

 __

 Data Communications Significant +1.5%

 Distributed Functions Significant +1.5%

 Performance Strong +2.5%

 Heavily Used Config Strong +2.5%

 Transaction Rate Significant +1.5%

 Online Data Entry Significant +1.5%

 End User Efficiency Average +0.5%

 Online Update Moderate -0.5%

 Complex Processing Significant +1.5%

 Reusability Strong +2.5%

 Installation Ease Insignificant -1.5%

 Operational Ease Significant +1.5%

 Multiple Sites Significant +1.5%

 Facilitate Change Strong +2.5%

 __

 Net adjustment factor : +19.0%

 Total adjusted function points : 940.10

 __

 Compiler : C Coefficient : 128

 Estimated delivered source instructions : 120333

 __

 Figure 5.12. BYL Function Point Report.

 78

 11/01/91

 <<<COST SUMMARY>>>

Project: ALTERNATIVE A Categories: 33 Interest Rate: 10.0% Page

File Name: SEA19-A.DBF Periods: 13 Inflation Rate: 0.0% 1

TYPE CATEGORY REAL DOLLARS% DISCOUNTED%

P ALTERNATIVE A 2513453.00 1663224.37

C R&D 637250.00 519049.75

C Customer Costs 149181.00 124276.46

C System Management 133221.00 109767.37

C Production Planning 15960.00 14509.09

C Supplier Costs 488069.00 394773.28

C System Management 113850.00 94022.04

C Product Planning 21130.00 18294.37

C Engineering Design 237016.00 192293.37

C Design Docs 48425.00 39338.54

C System Test & Eval 67648.00 50824.94

C Prod & Const 1112699.00 770851.06

C Customer Costs 112497.00 73178.06

C System/Product Mgmt 112497.00 73178.06

C Supplier Costs 1000202.00 697673.00

C I.E. & Op Analysis 68200.00 47991.00

C Manufacturing 684000.00 471512.68

C Recurring 635100.00 431099.43

C Non-Recurring 48900.00 40413.22

C Quality Control 78502.00 53669.95

C Initial Log Supp 169500.00 124499.38

C Supply Support 48000.00 32248.16

C Test & Support Equip 70000.00 52967.69

C Technical Data 5100.00 4214.87

C Personnel Training 46400.00 35068.64

C Ops & Support 763504.00 373323.40

C Operating Personnel 24978.00 12076.83

C Transportation 268000.00 131059.27

C Unscheduled Maint 123130.00 60314.31

C Maint Facilities 4626.00 2266.19

C Supply Support 295920.00 144959.71

C Maint Pers Training 9100.00 4322.75

C Test & Support Equi 32500.00 15753.82

C Transport & Handlin 5250.00 2570.51

 Figure 5.13. LCCC Cost Summary Report.

 79

 11/01/91

 <<<COST CATEGORY>>>

 ALTERNATIVE A

 Sub-Categories: 4 PROJECT Interest Rate: 10.0% Page

 Next Higher: ALTERNATIVE A Inflation Rate: 0.0% 1

 Life Cycle Cost: 2513453.00 Discounted Cost: 1663224.37

 PERIOD REAL DOLLARS DISCOUNTED PERIOD REAL DOLLARS DISCOUNTED

 ______ ____________ __________ ______ ____________ __________

 1 162712.00 147920.00

 2 279757.00 231204.12

 3 610569.00 458729.53

 4 417062.00 284858.96

 5 450983.00 280024.96

 6 90954.00 51341.16

 7 90954.00 46673.78

 8 90954.00 42430.71

 9 90954.00 38573.37

 10 90954.00 35066.70

 11 90954.00 31878.82

 12 34884.00 11115.11

 13 11762.00 3407.03

 Figure 5.14. LCCC Cost Category Report.

 80

 CHAPTER VI - CONCLUSIONS

 As earlier research indicated, while excellent software cost modeling tools are

available, hardware cost modeling tools which are not specific in nature are difficult to find.

 The evaluation process led to the conclusion that Before You Leap is an excellent

software cost modeling tool which merits further investigation. Such future research

should focus on verifying the indications stemming from this research: that the inclusion of

multiple FSI projects into the knowledge base will ultimately enable the package to

produce accurate results pertaining to FSI software development. If such accurate results

are forthcoming, they will serve as data for the "make" portion of the software partition.

 The lack of a suitable hardware cost modeling tool would seem to indicate that a

special purpose tool will have to be developed during the course of future research. It is

recommended that the new tool be patterned after Before You Leap. For example, the use

of development cost drivers, the use of maintenance cost drivers, the built in ability to

modify cost driver values, and the overall interface scheme should be incorporated into the

new package. Cost drivers are discussed in an earlier chapter in this paper which explores

potential parameters. That discussion should assist in selecting the proper parameters for

the hardware cost modeling tool. If such a model is successfully developed, it should serve

as an excellent source of data for the "make" portion of the hardware partition.

 Based on the assumption that a fully functional version of the Life-Cycle Cost

Calculator will be made available by Virginia Polytechnic Institute, it is recommended that

the cost breakdown structure for an embedded controller, which is detailed earlier in this

paper, be entered into the Life-Cycle Cost Calculator. Using data gathered from various

sources, including Before You Leap and the new hardware cost modeling tool, the Life-Cycle

Cost Calculator can determine overall costs projected over the entire life span of the

project, incorporating such important factors as the discount rate.

 The conclusion resulting from this research is that future FSI planning involving the

generic life cycle cost model for an embedded controller can best be implemented by

utilizing the Life-Cycle Cost Calculator and Before You Leap, and developing locally a

hardware costing package. LCCC should be provided with the cost breakdown structure

 81

resulting from this research. Costs for the software subsystem can be obtained from Before

You Leap. A hardware costing package, similar in function and form to Before You Leap,

will provide the costs for the hardware subsystem.

 Other costs not included in these subsystems can be determined using the methods

outlined in the chapter dealing with cost determination. When these costs are entered into

the cost breakdown structure in the Life-Cycle Cost Calculator, the final results will be the

life cycle cost estimate for the complete embedded controller project.

 82

 REFERENCES

[BLAN78]Blanchard, Benjamin S., Design and Manage to Life Cycle Cost, M/A Press,
Portland, Oregon, 1978.

[BLAN81]Blanchard, Benjamin S., Logistic Engineering and Management, 2nd ed., Prentice-

Hall, Inc., Englewood Cliffs, New Jersey, 1981.

[BLAN90]Blanchard, Benjamin S. and Fabrycky, Wolter J., Systems Engineering and

Analysis, 2nd ed., Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1990.

[BOEH81]Boehm, Barry W., Software Engineering Economics, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, 1981.

[BROW85]Brown, Robert J. and Yanuck, Rudolph R., Introduction to Life Cycle Costing, The

Fairmont Press, Inc., Atlanta, Georgia, 1985.

[CUTA90]Cutaia, Al, Technology Projection Modeling of Future Computer Systems, Prentice

Hall, Englewood Cliffs, NJ, 1990.

[DENE83]de Neumann, Bernard, Life Cycle Cost Models, Electronic Systems Effectiveness

and Life Cycle Costing, ed. Skwirzynski, J.K., Springer-Verlag, Berlin, Germany, 1983.

[DHIL89]Dhillon, B.S., Life Cycle Costing, Gordon and Breach Science Publishers, New York,

New York, 1989.

[FABR80]Fabrycky, W.J. and Thuesen, G.J., Economic Decision Analysis, 2nd ed., Prentice-

Hall, Inc., Englewood Cliffs, New Jersey, 1980.

[FERE74]Ferens, Daniel V. and Harris, Robert L., Avionics Computer Software Operation and

Support Cost Estimation, Proceedings of the IEEE 1979 National Aerospace and
Electronics Conference. Institute of Electrical and Electronic Engineers, Inc., New
York, New York, 1974.

[FSII90]FSI, International, Inc., Requirements Specification for the Module Level Controller:

FSI Project No. 3509, Lubbock, Texas, 1990.

[GATE76]Gates, Robert K. and Abraham, Michael J., Program LCC Documentation: Version
2, The Analytical Sciences Corporation, Reading, Massachusetts, 1976.

[GIBS79]Gibson, Keith and Miller, Sid, Evolution of Low Life-Cycle-Cost Inertial Navigator -

The N73 Strapdown System, Proceedings of the IEEE 1979 National Aerospace and
Electronics Conference, Institute of Electrical and Electronic Engineers, Inc., New
York, New York, 1979.

 83

[GORD87]The Gordon Group, Before You Leap: User's Guide, San Jose, California, 1987.

[GRIM74]Grimm, Major Richard W., Fire Control Radar and Airborne Computer Cost

Prediction Based on Technical Parameters, Proceedings of the IEEE 1974 National
Aerospace and Electronics Conference, Institute of Electrical and Electronic
Engineers, Inc., New York, New York, 1974.

[GUPT83]Gupta, Yash P., Life Cycle Cost Models and Associated Uncertainty, Electronic

Systems Effectiveness and Life Cycle Costing, ed. Skwirzynski, J.K., Springer-Verlag,
Berlin, Germany, 1983.

[HUFF91]Huff, John, telephone conversation on Life Cycle Costing as it Pertains to

Embedded Controllers, Wright-Patterson AFB, Ohio, July 1991.

[KNUS81]Knust, H., Report on the Navy Life Cycle Cost Model for the Sea Nymph Project,

Naval Underwater Systems Center, Newport, Rhode Island, 1981.

[LAM88]Lam, Herman and O'Malley, John, Fundamentals of Computer Engineering: Logic

Design and Microprocessors, John Wiley and Sons, New York, New York, 1988.

[MANT88]Mantei, Marilyn M. and Teorey, Toby J., Cost/Benefit Analysis for Incorporating

Human Factors in the Software Lifecycle, Communications of the ACM, 31:428-439,
April 1988.

[NASA89]National Aeronautics and Space Administration, Office of Safety, Reliability,

Maintainability, and Quality Assurance, Information System Life-Cycle and
Documentation Standards release 4.3, Washington, D.C., 1989.

[PERR74]Perrigo, W.R. and Easterday, J.L., Avionic Equipment Reliability and Low Life Cycle

Cost, Proceedings of the IEEE 1974 National Aerospace and Electronics Conference,
Institute of Electrical and Electronic Engineers, Inc., New York, New York, 1974.

[PFLE87]Pfleeger, Shari Lawrence, Software Engineering: The Production of Quality

Software, Macmillan Publishing Company, New York, New York, 1987.

[PHIS76] Phister, Montgomery Jr., Data Processing Technology and Economics, The Santa

Monica Publishing Company, Santa Monica, California, 1976.

[PRIE88]Priest, John W., Engineering Design for Producibility and Reliability, Marcel

Dekker, Inc., New York, New York, 1988.

[REIC80]Reiche, H., Life Cycle Cost, Reliability and Maintainability of Electronic Systems,

ed. Arsenault, J.E., and Roberts, J.A., Computer Science Press, Potomoc, Maryland,
1980.

 84

[SELD79] Seldon, Robert M., Life Cycle Costing: A Better Method of Government

Procurement, Westview Press, Boulder, Colorado, 1979.

[SHUP80]Shupe, Dean S., What Every Engineer Should Know About Economic Decision

Analysis, Marcel Dekker, Inc., New York, New York, 1980.

[SOMM89]Sommerville, Ian, Software Engineering, 3rd ed., Addison-Wesley Publishing

Company, Reading, Massachusetts, 1989.

[STON79]Stone, Harold S., Life-Cycle Cost Analysis of Instruction-Set Architecture

Standardization for Military Computer Systems, IEEE Computer, 35-46, April 1979.

[TAUS81]Tausworthe, Robert C., Deep Space Network Software Cost Estimation Model, Jet

Propulsion Laboratory, Pasadena, California, 1981.

[TAUS89]Tausworthe, Robert C., User's Manual--DSN Software Cost Model, Jet Propulsion

Laboratory, Pasadena, California, 1989.

[TAYL74]Taylor, James H., A Realistic Approach to System Life Cycle Cost, Proceedings of the

IEEE 1974 National Aerospace and Electronics Conference, Institute of Electrical and
Electronic Engineers, Inc., New York, New York, 1974.

[VIRG91]Virginia Polytechnic Institute and State University, Life-Cycle Cost Calculator,

Blacksburg, Virginia, 1991.

[WOLV84]Wolverton, R.W., Software Costing, Handbook of Software Engineering, ed. Vick,

C.R. and Ramamoorthy, C.V., Van Nostrand Reinhold Company, New York, New York,
1984.

 85

 APPENDIX - DESCRIPTION OF COST CATEGORIES

 86

Cost Category

Method of Determination

Cost Category Description and Justification

Total system cost (C)
C = [CR + CP + CM + CD]
CR = Research and Development cost
CP = Production cost
CM = Maintenance cost
CD = Retirement and Disposal cost
Includes all future life cycle costs associated with the acquisition, maintenance and
subsequent disposition of the system.

Research and development (CR)
CR = [CRM + CRP + CRF + CRD + CRT + CRI]
CRM = System/Product management cost
CRP = Product Planning cost
CRF = Functional Specification cost
CRD = Hardware/Software development partition
CRT = Integrated Testing
CRI = Integration and Testing
Includes all costs associated with program management, conceptual/feasibility studies,
research and development, overall design, design documentation, design and
implementation of system software, design and fabrication of hardware components and
prototypes, and associated documentation. These costs are basically nonrecurring.

System/Program management (CRM)
 N
CRM = Σ CRMi
 i=1
CRMi = Cost of specific activity i
N = Number of management activities
Cost of management activities applicable to conceptual/feasibility studies, product
research, engineering design, system development, system test and evaluation, and related
documentation. Such costs cover the program manager and staff; marketing; contracts;
procurement; configuration management; logistics management; data management; etc.
Management functions relate to CRP, CRR, CRF, and CRD.

 87

Product Planning (CRP)
 N
CRP = Σ CRPi
 i=1
CRPi = Cost of specified activity i
N = Number of planning activities
Product planning includes a market analysis to identify the need for a system because of
deficiencies or problems, as well as feasibility studies to determine and/or justify a need
for a specific requirement. This also involves the development of operational and
maintenance concepts, preparation of technical and program proposals, development of
program plans and specifications, development of financial plans, etc.

Functional Specification of Microprocessor System (CRF)
 N
CRF = Σ CRFi
 i=1
CRFi = Cost of specific design activity i
N = Number of design activities
Includes all initial design effort associated with system/equipment definition and
development. Specific areas include system engineering; design engineering (electrical,
mechanical, drafting); reliability and maintainability engineering; human factors;
functional analysis and allocation; logistic support analysis; components; producibility;
standardization; safety; etc. Design associated with modifications is covered in CON.
Conceptual design includes effort oriented to defining mission scenarios, system
operational requirements analysis and definition, preliminary maintenance concept, etc.

Preliminary design includes such tasks as evaluation of alternative design configurations,
evaluation of logistic support requirements, preliminary design and analysis of the chosen
configuration, and the actual system specifications.

Hardware/Software Development Partition (CRD)
CRD = [CRDH + CRDS]
CRDH = Development costs associated with the hardware portion of the project
CRDS = Development costs associated with the software portion of the project
When portions of the system are implemented in hardware and others in software, related
development costs in both areas must be taken into account.

 88

Hardware Costs (CRDH)
CRDH = [CRDHC + CRDHP + CRDHI + CRDHT]
CRDHC = Design Completion
CRDHP = Hardware Make/Buy Partition
CRDHI = Hardware Integration
CRDHT = Hardware Test and Evaluation
Hardware costs involve the completion of the design initiated in CRF, the decision to make
or buy hardware components, the integration of all hardware components, and test and
evaluation of the integrated hardware.

Design Completion of Hardware (CRDHC)
 N
CRDHC = Σ CRDHCi
 i=1
CRDHCi = Cost of specific activity i
N = Number of activities
The design completion phase involves development of the detailed design, design support,
and design review. Detailed design includes the design and definition of units, assemblies,
subassemblies, and the specifications of components and parts. Design support includes
the costs of draftsmen, technical publication specialists, model builders, laboratory
technicians, component-parts specialists, test technicians, and computer-aided design
specialists. Design reviews include formal reviews such as the equipment design review,
which is conducted during the detailed design phase, and the critical design review, which
is conducted after the detailed design review to verify the adequacy and producibility of the
design.

Hardware Make/Buy Partition (CRDHP)
CRDHP = [CRDHPI + CRDHPP]
CRDHPI = Development costs associated with hardware produced in-house
CRDHPP = Development costs associated with hardware procured from a vendor or

subcontracted out
Some hardware components will be developed and produced in-house, others may be
available off-the-shelf, and procured from a vendor.

Development Costs of Hardware Produced In-House (CRDHPI)
 N

CRDHPI = Σ CRDHPIi

 i=1

CRDHPIi = Cost of specific activity i
N = Number of activities
To produce hardware in-house, prototypes must be developed and tested to validate the
design, and the various board level components must be constructed.

 89

Development Costs of Hardware Procured from Vendor (CRDHPP)
CRDHPP = [CRDHPPE + CRDHPPU]
CRDHPPE = Evaluation of Hardware Procured from Vendor
CRDHPPU = Unit Costs of Hardware Procured from Vendor
For hardware which is procured, both categories of products and specific vendors must be
evaluated, and the selected components must be purchased.

Evaluation of Hardware Procured from Vendor (CRDHPPE)
CRDHPPE = [CRDHPPEP + CRDHPPEV]
CRDHPPEP = Product Evaluation
CRDHPPEV = Vendor Evaluation
This includes the evaluation of various off-the-shelf products to determine which best suits
the specifications. A list of desired features should be compiled initially, and those
products which have a high percentage of those features should be considered. It also
includes the evaluation of the available vendors, based on such factors as years in business,
stability, warranties, customer recommendations, etc.

Unit Costs of Hardware Procured from Vendor (CRDHPPU)
 N

CRDHPPU = Σ CRDHPPUi
 i=1
CRDHPPUi = Cost of specific component i
N = Number of components
Each hardware component procured from a vendor has a vendor price associated with it.

Hardware Integration (CRDHI)
CRDHI = [CRDHII + CRDHID]
CRDHII = Costs associated with integration of hardware components
CRDHID = Documentation costs associated with integrated hardware
When all hardware components have been fabricated and/or procured, all components
must be integrated into an overall hardware package and all documentation must be
compiled and archived.

Integration of Components (CRDHII)
 N

CRDHII = Σ CRDHIIi

 i=1
CRDHIIi = Cost of specific component i
N = Number of components
All hardware components, whether fabricated in-house or procured, must be integrated
into an overall hardware package.

 90

Design Documentation of Hardware (CRDHID)
CRDHID = [CRDHIDI + CRDHIDP + CRDHIDL]
CRDHIDI = Costs of compiling in-house documentation
CRDHIDP = Costs of compiling vendor documentation
CRDHIDL = Costs of establishing documentation library
Design documentation includes the costs of compiling in-house documentation and vendor
documentation, as well as archiving all documentation.

Compilation of in-house documentation (CRDHIDI)
 N

CRDHIDI = Σ CRDHIDIi
 i=1
CRDHIDIi = Cost of specific activity i
N = Number of activities
In-house documentation includes such items as design drawings (assembly drawings,
control drawings, logic diagrams, installation drawings, and schematics), material and
parts lists (parts lists, material lists, provisioning lists, etc.), and analyses and reports
(trade-off study reports supporting design decisions, reliability and maintainability
analyses and predictions, human factors analyses, safety reports, logistic support analyses,
configuration identification reports, installation and assembly procedures, etc.). This
category also includes the preparation, printing, publication and distribution of all
data/documentation associated with previous phases. This covers program plans; R & D
reports; design data; test plans and reports; analyses; preliminary operational and
maintenance procedures; and all effort related to a specific documentation requirement.

Compilation of vendor documentation (CRDHIDP)
 N

CRDHIDP = Σ CRDHIDPi
 i=1
CRDHIDPi = Cost of specific activity i
N = Number of activities
If multiple components are procured from vendors, the various pieces of documentation
which accompanied each component must be gathered together into one document.

Establish Documentation Library (CRDHIDL)
 N

CRDHIDL = Σ CRDHIDLi
 i=1
CRDHIDLi = Cost of specific activity i
N = Number of activities
All documentation, whether associated with in-house or procured hardware, must be
archived in a single location.

 91

Hardware Test and Evaluation (CRDHT)
 N

CRDHT = Σ CRDHTi
 i=1
CRDHTi = Cost of specific activity i
N = Number of activities
This involves test planning, testing and evaluation, and resulting test data and reports
dealing with the overall hardware package.

Software Costs (CRDS)
CRDS = [CRDSD + CRDSP + CRDSI + CRDST]
CRDSD = Software Design costs
CRDSP = Make/Buy Partition
CRDSI = Software Integration costs
CRDST = Software Test and Evaluation costs
Various functions in a microprocessor system may be implemented in software. Associated
costs include software design costs, in-house and/or procured software, software
integration costs, and test and evaluation costs.

Software Design (CRDSD)
 N

CRDSD = Σ CRDSDi
 i=1
CRDSDi = Cost of specific activity i
N = Number of activities
The software design phase involves development of the detailed design, design support,
and design review. Detailed design includes the actual software design, which is the
process of representing the functions of each software system in such a manner that they
may be easily transformed into one or more programs. Design support includes the costs
of tools such as compilers and debuggers, flowcharting software, programmers' toolkits,
CASE tools, etc., as well as documentation specialists. Design reviews include formal
reviews such as the static program verification, code inspection, and flight readiness
review.

Software Make/Buy Partition (CRDSP)
CRDSP = [CRDSPI + CRDSPP]
CRDSPI = Development costs associated with software produced in-house
CRDSPP = Development costs associated with software procured from a vendor or
subcontracted out
Some software components will be developed and produced in-house, others may be
available off-the-shelf, and procured from a vendor.

 92

Software Developed In-House (CRDSPI)
 N

CRDSPI = Σ CRDSPIi
 i=1
CRDSPIi = Cost of specific activity i
N = Number of activities
The costs associated with software developed in-house include the costs of software
engineering support tools, software development tools, all costs associated with the actual
implementation effort, costs of integrating subsystems, costs of test and evaluation of
software components, software documentation costs, costs of verification and validation,
debugging effort, and quality assurance activities.

Software Procured from Vendor (CRDSPP)
CRDSPP = [CRDSPPE + CRDSPPV + CRDSPPT]
CRDSPPE = Evaluation
CRDSPPV = Vendor Fees
CRDSPPT = Training Costs
For software which is procured, both categories of products and specific vendors must be
evaluated, software packages must be purchased, and personnel must familiarize
themselves with the software packages.

Evaluation of Software Procured from Vendor (CRDSPPE)
CRDSPPE = [CRDSPPEP + CRDSPPEV]
CRDSPPEP = Product Evaluation
CRDSPPEV = Vendor Evaluation
This includes the evaluation of various off-the-shelf products to determine which best suits
the specifications. A list of desired features should be compiled initially, and those
products which have a high percentage of those features should be considered. It also
includes the evaluation of the available vendors, based on such factors as years in business,
stability, warranties, customer recommendations, etc.

Vendor Fees for Software Procured from Vendor (CRDSPPV)
CRDSPPV = [CRDSPPVP + CRDSPPVS + CRDSPPVN]
CRDSPPVP = Procurement Costs
CRDSPPVS = Site License Agreement
CRDSPPVN = Networking Capabilities
Vendor fees include such costs as the purchase price of the software package, a site license
agreement to permit the company to make multiple copies of the software, and any
additional fees involved in providing networking capabilities for the software if they are
needed.

 93

Training Costs for Software Procured from Vendor (CRDSPPT)
 N

CRDSPPT = Σ CRDSPPTi
 i=1
CRDSPPTi = Cost of specific activity i
N = Number of activities
The training costs associated with software procured from a vendor include seminars,
training tapes, or self-instruction needed to familiarize the personnel with the capabilities
of the software package.

Software Integration (CRDSI)
CRDSI = [CRDSII + CRDSID]
CRDSII = Costs associated with integration of software subsystems
CRDSID = Documentation costs associated with software
When all software has been implemented and/or procured, all subsystems must be
integrated into an overall software package and all documentation must be compiled and
archived.

Integration of Software Subsystems (CRDSII)
 N

CRDSII = Σ CRDSIIi
 i=1
CRDSIIi = Cost of specific subsystem i
N = Number of subsystems
All software subsystems, whether implemented in-house or procured, must be integrated
into an overall software package.

Software Documentation (CRDSID)
CRDSID = [CRDSIDI + CRDSIDP + CRDSIDL]
CRDSIDI = Costs of compiling in-house documentation
CRDSIDP = Costs of compiling vendor documentation
CRDSIDL = Costs of establishing documentation library
Software documentation includes the costs of compiling in-house documentation and
vendor documentation, as well as archiving all documentation.

 94

Compilation of in-house documentation (CRDSIDI)
 N

CRDSIDI = Σ CRDSIDIi
 i=1
CRDSIDIi = Cost of specific activity i
N = Number of activities
In-house documentation includes such items as user documentation and system
documentation. User documentation should include such documents as a functional
description which explains the system capabilities, an installation document which
explains the installation procedure and configuration options, an introductory manual
which explains how to get started using the system, a reference manual which describes all
of the system facilities and how they can be used, and a system administrator's manual,
which explains how to respond to various situations and how to perform various
housekeeping chores.

Compilation of vendor documentation (CRDSIDP)
 N

CRDSIDP = Σ CRDSIDPi
 i=1
CRDSIDPi = Cost of specific activity i
N = Number of activities
If multiple software components are procured from vendors, the various pieces of
documentation which accompanied each component must be gathered together into one
document.

Establish Documentation Library (CRDSIDL)
 N

CRDSIDL = Σ CRDSIDLi
 i=1
CRDSIDLi = Cost of specific activity i
N = Number of activities
All documentation, whether associated with in-house or procured software, must be
archived in a single location.

Software Test and Evaluation (CRDST)
 N

CRDST = Σ CRDSTi
 i=1

CRDSTi = Cost of specific activity i
N = Number of activities
This includes test planning, test and evaluation, system planning, verification and
validation, data collection, and reports of software performance.

 95

Integrated Testing (CRT)
 N

CRT = Σ CRTi
 i=1
CRTi = Cost of specific activity i
N = Number of activities
This step involves in-circuit emulation of the microprocessor system, in order to debug
both the hardware and software prior to integration.

Integration and Testing (CRI)
CRI = [CRII + CRID + CRIT]
CRII = Cost of integration of hardware and software
CRID = Cost of integrating and archiving all documentation
CRIT = Cost of System Test and Evaluation
This phase involves the integration of the hardware and software components, compilation
of system documentation, and final testing of the integrated system. All hardware and
software components are integrated into the final functional package. In addition, all
documentation which pertains to the hardware and software components is merged into
an overall set of documentation as well as being archived. Finally, the functional system is
put through final tests which involve test planning, testing and evaluation, and reports of
system performance.

Production (CP)
CP = [CPM + CPC + CPP + CPD + CPL]
CPM = Production/Construction management cost
CPC = Construction cost
CPP = System Production costs
CPT = System Documentation costs
CPD = System/Product Distribution costs
CPL = Cost of initial logistic support
Includes all costs associated with the acquisition and/or production of systems subsequent
to the completion of the research and development phase. Specifically this covers
management, construction, system realization, system distribution, and initial logistic
support.

Production Management (CPM)
 N

CPM = Σ CPMi
 i=1
CPMi = Cost of specific management activity i
N = Number of activities
Cost of management oriented activity applicable to construction of facilities, system
production, product distribution, and logistics management.

 96

Construction cost (CPC)
CPC = [CPCP + CPCT + CPCM + CPCI]
CPCP = Production facilities cost
CPCT = Test facilities cost
CPCM = Maintenance facilities acquisition cost
CPCI = Inventory Warehouse acquisition cost

For each item, one should consider the following.
CPCx = [CPCxL + CPCxM + CPCxU + CPCxE]
CPCxL = Construction labor cost
CPCxM = Construction material cost
CPCxU = Cost of utility installation
CPCxE = Capital equipment cost
x = {P,T,M,I}
Includes all initial acquisition costs associated with production, test, maintenance, and/or
warehousing facilities. Facilities constitute real property, plant, equipment, and
installation of utilities (gas, electric power, water, telephone, heat, air conditioning, etc.).
Facility costs cover the development of new building projects, the modification of existing
facilities, and/or the occupancy of existing facilities without modification. Category costs
include preliminary surveys; real estate; building construction; access roads; etc. Cost
items include construction labor, construction material, capital equipment, and utility
installation.
(a) Production facilities support the operations described in CPP and CPI. Initial

acquisition and sustaining maintenance costs are included.
(b) Special test facilities cover any peculiar requirements (beyond that covered under

existing categories such as engineering and manufacturing tests) for evaluation and
test. Initial acquisition and sustaining maintenance costs are included.

(c) Maintenance facilities are required to support the maintenance needs of the system
throughout its life-cycle. Recurring sustaining costs are covered in CMTF.

(d) Inventory warehouses are required for the storage of completed systems which have
not yet been distributed.

System Production (CPP)
CPP = [CPPH + CPPS + CPPI]
CPPH = Cost of Hardware Components
CPPS = Cost of Software Components
CPPI = Cost of System Integration
This category involves the fabrication of hardware components, incorporation of software
components, and integration of all components into a functional unit.

 97

Hardware Components (CPPH)
CPPH = [CPPHP + CPPHI]
CPPHP = Make/Buy Partition
CPPHI = Cost of Hardware Integration
This category includes the cost of hardware which is built in-house, the cost of hardware
procured from a vendor or subcontracted out, and the cost of integrating the two into the
overall hardware portion of the system.

Make/Buy Partition (CPPHP)
CPPHP = [CPPHPI + CPPHPP]
CPPHPI = Development costs associated with hardware produced in-house
CPPHPP = Development costs associated with hardware procured from a vendor or

subcontracted out
Some hardware components will be produced in-house, others may be procured from a
vendor.

Hardware Produced In-House (CPPHPI)
CPPHPI = [CPPHPII + CPPHPIP + CPPHPIQ]
CPPHPII = Industrial Engineering costs
CPPHPIP = Production costs
CPPHPIQ = Quality Control costs
This category includes those costs involved in the production of those hardware
components which are built in-house. This includes the costs associated with industrial
engineering, production, and quality control.

Industrial Engineering costs of Hardware Built In-House (CPPHPII)
CPPHPII = [CPPHPIIM + CPPHPIIE + CPPHPIIC]
CPPHPIIM = Cost of manufacturing engineering
CPPHPIIE = Cost of methods engineering
CPPHPIIC = Cost of production control
Includes all recurring and nonrecurring costs associated with the initial and sustaining
engineering functions of construction and production. This constitutes (1) manufacturing
engineering (e.g., process design, design of special tools/fixtures/test equipment, man-
machine functions, etc.); (2) methods engineering (e.g., work methods, job skill
requirements, standards, design of subassembly and assembly operations, etc.); and (3)
production control operations (e.g., production lot quantities, economic order quantities,
inventory levels, the evaluation of production operations to insure that product quality,
performance, reliability, maintainability, safety, and other features are maintained
throughout the production process, etc.).

 98

Production/Manufacturing Costs (CPPHPIP)
CPPHPIP = [CPPHPIPR + CPPHPIPN]
CPPHPIPR = Recurring manufacturing costs
CPPHPIPN = Nonrecurring manufacturing costs
This covers all recurring and nonrecurring costs associated with the production and test of
multiple quantities of prime systems. Facility construction, capital equipment, and facility
maintenance are covered under CPC.

(1) Recurring manufacturing costs--fabrication and assembly labor cost, material and

inventory cost, inspection and test cost, and product rework as required. Sustaining
engineering support required on a recurring basis is also included. Costs are
associated with the production of prime equipment. Operational test and support
equipment, training equipment, and spare/repair parts material costs are included in
CPL. Manufacturing management cost is included in CPM.

(2) Nonrecurring manufacturing costs--labor and material costs associated with the
installation and support of factory tools, fixtures, and test equipment. Design costs are
included in CPPHPIIM.

Quality Control (CPPHPIQ)
 N N

CPPHPIQ = [CPPHPIQA + Σ CPPHPIQCi + Σ CPPHPIQSi]
 i=1 i=1
CPPHPIQA = Quality assurance cost
CPPHPIQCi = Cost of qualification test i
CPPHPIQSi = Cost of production sampling test i
N = Number of activities
This category covers the recurring cost of maintaining an on-going quality assurance or
quality control capability throughout production and construction, and directly supports
activities in CPC, CPPHPII, CPPHPIP, and CPL. In addition, the specific nonrecurring costs
associated with the initial product qualification testing and periodic sampling tests
conducted throughout production are included. The inspection and acceptance testing for
individual items in production is covered in CPPHPIP.

Hardware Procured from Vendor (CPPHPP)
 N

CPPHPP = Σ CPPHPPPi
 i=1
CPPHPPPi = Cost of procurement expense i
N = Number of expenses
Each hardware component procured from a vendor has a procurement cost associated with
it. This procurement cost may include the cost per unit, as well as a maintenance contract
if provided by the vendor.

 99

Hardware Integration (CPPHI)
CPPHI = [CPPHII + CPPHIT + CPPHIQ]
CPPHII = Integration of components
CPPHIT = Inspection and test of integrated unit
CPPHIQ = Quality control of integration process
All hardware components, fabricated in-house and procured, must be integrated into an
overall hardware package. The integrated unit must then be tested, with quality assurance
monitoring the integration and testing processes.

Software Components (CPPS)
CPPS = [CPPSP + CPPSI]
CPPSP = Make/Buy Partition
CPPSI = Cost of Software Integration
This category includes the cost of all software components implemented in-house or
procured from a vendor (or subcontracted out), and the cost of integrating the two into the
overall software portion of the system.

Make/Buy Partition (CPPSP)
CPPSP = [CPPSPI + CPPSPP]
CPPSPI = Costs associated with software implemented in-house
CPPSPP = Acquisition costs associated with software procured from a vendor or

subcontracted out
Those software components produced in-house must be duplicated for use in the overall
system, and those which will be procured have associated costs.

Software Produced In-House (CPPSPI)
CPPSPI = Costs associated with software duplication
That software written in-house must be duplicated for use in the overall system.

Software Procured from Vendor (CPPSPP)
CPPSPP = [CPPSPPP + CPPSPPS + CPPSPPN]
CPPSPPP = Procurement Costs
CPPSPPS = Site License Agreement
CPPSPPN = Networking Capabilities
Procurement costs include such costs as the purchase price of the software package, a site
license agreement to permit the company to make multiple copies of the software, and any
additional fees involved in providing networking capabilities for the software if they are
needed.

 100

Software Integration (CPPSI)
CPPSI = [CPPSII + CPPSIT]
CPPSII = Integration of components
CPPSIT = Inspection and test of integrated unit
All software components, implemented in-house and procured, must be integrated into an
overall software system. The final software package must then be tested.

System Integration (CPPI)
CPPI = [CPPII + CPPIT]
CPPII = Integration of components
CPPIT = Inspection and test of integrated unit
All hardware and software components must be integrated into an overall functional unit.
The final unit must then be tested.

System Documentation (CPT)
CPT = Printing of system documentation
All documentation pertaining to the functional unit must be printed and bound for
distribution.

System/Product Distribution (CPD)
CPD = [CPDM + CPDP + CPDT + CPDI]
CPDM = Cost of marketing and sales
CPDP = Cost of packaging
CPDT = Cost of transportation and traffic management
CPDI = Cost of inventory in warehouses
This category includes:
(1) The cost of product marketing and sales--advertising, exhibits, personnel costs

associated with marketing and distribution, etc.
(2) The cost of packaging the product for safe shipping.
(3) The cost of transportation and traffic management--initial destination transportation

from the production site to warehouses, and subsequent transportation from
warehouses to the consumer. Traffic management and control functions are also
included.

(4) The cost of inventory in various distribution warehouses.

 101

Initial logistic support cost (CPL)
CPL = [CPLM + CPLP + CPLS + CPLI + CPLD + CPLT + CPLX + CPLY]
CPLM = Logistic program management cost
CPLP = Cost of provisioning
CPLS = Initial spare/repair part material cost
CPLI = Initial inventory management cost
CPLD = Cost of technical data preparation
CPLT = Cost of initial training and training equipment
CPLX = Acquisition cost of operational test and support equipment
CPLY = Initial transportation and handling cost
Includes all integrated logistic support planning and control functions associated with the
development of system support requirements, and the transition of such requirements
from supplier(s) to the applicable operational site. Elements cover

(a) Logistic program management cost--management, control, reporting, corrective
action system, budgeting, planning, etc.

(b) Provisioning cost--preparation of data which is needed for the procurement of
spare/repair parts and test and support equipment.

(c) Initial spare/repair part material cost--spares material stocked at the various
inventory points to support the maintenance needs of prime equipment, test and
support equipment and training equipment. Replenishment spares are covered
in CMSHI.

(d) Initial inventory management cost--cataloging, listing, coding, etc., of spares
entering the inventory.

(e) Technical data preparation cost--development of operating and maintenance
instructions, test procedures, maintenance cards, tapes, etc. Also includes
reliability and maintainability data, test data, etc., covering production and test
operations.

(f) Initial training and training equipment cost--design and development of training
equipment, training aids/data, and the training of personnel initially assigned to
operate and maintain the prime equipment, test and support equipment, and
training equipment. Personnel training costs include instructor time;
supervision; student pay and allowances; training facilities; and student
transportation.

(g) Test and support equipment acquisition cost--design, development, and acquisition
of test and support equipment plus handling equipment needed to operate and
maintain prime equipment in the field. The maintenance of test and support
equipment throughout the system life-cycle is covered in CMSHHT.

(h) Initial transportation and handling cost (first destination transportation of logistic
support elements from the supplier to the applicable operational site). Initial
facility costs are identified in CPC.

 102

Maintenance Support Cost (CM)
CM = [CML + CMT + CMS]
CML = Cost of system/equipment life-cycle management
CMT = Cost of maintenance training and facilities
CMP = Cost of system maintenance
Includes all costs associated with maintenance support of the system throughout its life-
cycle subsequent to equipment delivery in the field. Specific categories cover the cost of
life cycle management, maintenance training facilities, and system maintenance. Costs are
generally determined for each year throughout life-cycle.

System/Product Life Cycle Management (CML)
 N

CML = Σ CMLi
 i=1
CMLi = Cost of specific management activity i
N = Number of activities
Cost of management oriented activity applicable to system maintenance.

Maintenance Training and Facilities cost (CMT)
CMT = [CMTT + CMTF]
CMTT = Cost of maintenance training
CMTF = Cost of maintenance facilities
This category includes the costs associated with training maintenance personnel and the
upkeep of maintenance facilities.

Maintenance Training cost (CMTT)
CMTT = [((QMS)(TT)(CMT)) + CMTTF + CMTTD]
QMS = Quantity of maintenance students
CMT = Cost of maintenance training ($/student-week)
TT = Duration of training program (weeks)
CMTTF = Cost of upkeep of training facilities
CMTTD = Cost of training data
Initial maintenance training cost is included in CPLT. This category covers the formal
training of personnel assigned to maintain the prime equipment, test and support
equipment, and training equipment. Such training is accomplished on a periodic basis
throughout the system life-cycle to cover personnel replacement due to attrition. Total
costs include instructor time; supervision; student pay and allowances while in school;
training facilities (allocation of portion of facility required specifically for formal training);
training aids and data; and student transportation as applicable.

 103

Maintenance facility costs (CMTF)
CMTF = [(CMFS + CU) x (% allocation)]
CMFS = Cost of maintenance facility support ($/site)
CU = Cost of utilities ($/site)
Initial acquisition (construction) cost for maintenance facility is included in CPCM. This
category covers the annual recurring costs associated with the occupancy and upkeep of
maintenance facilities.

If a maintenance shop supports more than one system, associated costs are allocated
proportionately to each system concerned.

System Maintenance cost (CMS)
CMS = [CMSH + CMSS]
CMSH = Hardware maintenance cost
CMSS = Software maintenance cost
System maintenance involves maintenance activities dealing with both the hardware and
software components.

Hardware Maintenance (CMSH)
CMSH = [CMSHH + CMSHI + CMSHT + CMSHM]
CMSHH = Hardware maintenance costs
CMSHI = Inventory--spares and material support
CMSHT = Technical data costs
CMSHM = System modifications
Includes all hardware maintenance costs including field and factory maintenance costs,
maintenance personnel, spares and material support, technical data, and the costs of
system modifications.

Hardware Maintenance Activities (CMSHH)
CMSHH = [CMSHHF + CMSHHM + CMSHHT]
CMSHHF = Field maintenance costs
CMSHHM = Factory maintenance costs
CMSHHT = Test and support equipment maintenance
Includes all maintenance activities performed on-site as well as those requiring special
facilities at the maintenance facilities. When a system malfunctions or when a scheduled
maintenance action is performed, personnel manhours are expended, spare parts and
related materials are utilized, and reports are completed. Field maintenance also involves
personnel travel, while factory maintenance involves transportation and handling of the
system. This category also includes the annual recurring maintenance costs for the test and
support equipment itself, and support equipment operation costs.

 104

Inventory--Spare/repair parts cost (CMSHI)
CMSHI = [CIO + CII + CIS + CIC]
CIO = Cost of organizational spare/repair parts
CII = Cost of intermediate spare/repair parts
CIS = Cost of supplier spare/repair parts
CIC = Cost of consumables

CIO = [(CA)(QA) + (CIi)(QIi) + (CHi)(QHi)]
CA = Average cost of material purchase order ($/order)
QA = Quantity of purchase orders
CI = Cost of spare item i
QI = Quantity of i items required or demand
CH = Cost of maintaining spare item i in the inventory ($/$ value of the inventory)
QH = Quantity of i items in the inventory
CII and CIS are determined in a similar manner.
Initial spare/repair part costs are covered in CPLS. This category includes all replenishment
spare/repair parts and consumable materials (e.g., oil, lubricants, fuel, etc.) that are
required to support maintenance activities associated with prime equipment,
transportation and handling equipment (CPDT), test and support equipment (CMSHHT), and
training equipment. This category covers the cost of purchasing items; the actual cost of
the material itself; and the cost of holding or maintaining items in the inventory. Supply
support costs are assigned to the applicable level of maintenance.

Technical data cost (CMSHT)
 N

CMSHT = Σ CMSHTi
 i=1
CMSHTi = Cost of specific data item i
N = Number of data items
Initial technical data preparation costs are covered in CPLD. Individual data reports
covering specific maintenance actions are included in CMSHH, CMSSS, and CMSHHT. This
category includes any other data (developed on a sustaining basis) necessary to support
the operation and maintenance of the system throughout its life-cycle.

 105

System/equipment modification cost (CMSHM)
 N

CMSHM = Σ CMSHMi
 i=1
CMSHMi = Cost of specific modification i
N = Number of modifications
Throughout the system life-cycle after equipment has been delivered in the field,
modifications are often proposed and initiated to improve system performance,
effectiveness, or a combination of both. This category includes modification kit design (R &
D); material; installation and test instructions; personnel and supporting resources for
incorporating the modification kit; technical data change documentation; formal training
(as required) to cover the new configuration; spares; etc. This modification may affect all
elements of logistics.

Software Maintenance (CMSS)
CMSS = [CMSSC + CMSSS]
CMSSC = Configuration management costs
CMSSS = Software maintenance costs
Includes all software maintenance costs including configuration management, perfective,
adaptive, and corrective maintenance, and software maintenance equipment.

Configuration Management (CMSSC)
 N

CMSSC = Σ CMSSCi
 i=1
CMSSCi = Cost of specific modification i
N = Number of modifications
Configuration management activities involve reviewing and processing change requests
and discrepancy reports and verifying that approved modifications were made and
documented. This category also involves activities associated with maintaining files of
current and previous releases of software items.

 106

Software Maintenance Activities (CMSSS)
CMSSS = [CMSSSP + CMSSSC + CMSSSA + CMSSSD]
CMSSSP = Perfective maintenance
CMSSSC = Corrective maintenance
CMSSSA = Adaptive maintenance
CMSSSD = Debugging and diagnostic equipment
Software maintenance activities take many forms. Perfective maintenance involves
enhancements in the software in response to changes in the environment, as well as
modifying code to improve the performance of the system. Corrective maintenance
involves debugging software in response to errors which occur in the system. Adaptive
maintenance is necessary when a change in one part of the system requires changes to
other parts of the system. The implementation of the secondary changes is adaptive
maintenance. Debugging and diagnostic equipment includes such items as test data
generators, execution flow summarizers, file comparators, simulators, symbolic dump
programs, trace packages, and interactive debugging environments.

System retirement and disposal cost (CD)
CD = [(FC)(CDIS - CREC)] + CDR
FC = Condemnation factor
CDIS = Cost of system/equipment disposal
CREC = Reclamation value
CDR = Cost of system/equipment ultimate retirement
As the system evolves through its life cycle, there are non-repairable items which fail and
must be discarded. In addition, there are items which are beyond economic repair and are
also discarded. Eventually the system will be retired due to obsolescence or wearout. The
process of phase-out and disposal may involve disassembly, decomposition, reforming,
reprocessing, etc. This in turn involves personnel, support equipment, and transportation
and handling, and proper documentation. Software will be archived as newer releases
become available.

 Summary of terms

C Total system cost

CA Average cost of material purchase order ($/order)

CD Retirement and Disposal cost

CDIS Cost of system/equipment disposal

CDR Cost of system/equipment ultimate retirement

CH Cost of maintaining spare item i in the inventory ($/$ value of the
inventory)

CI Cost of spare item i

CIC Cost of consumables

 107

CII Cost of intermediate spare/repair parts

CIO Cost of organizational spare/repair parts

CIS Cost of supplier spare/repair parts

CM Maintenance cost

CMFS Cost of maintenance facility support ($/site)

CML Cost of system/equipment life-cycle management

CMS Cost of system maintenance

CMSH Hardware maintenance cost

CMSHH Hardware maintenance costs

CMSHHF Field maintenance costs

CMSHHM Factory maintenance costs

CMSHHT Test and support equipment

CMSHI Inventory--spares and material support

CMSHM System modifications

CMSHT Technical data costs

CMSS Software maintenance cost

CMSSC Configuration management costs

CMSSS Software maintenance costs

CMSSSA Adaptive maintenance

CMSSSC Corrective maintenance

CMSSSD Debugging and diagnostic equipment

CMSSSP Perfective maintenance

CMT Cost of maintenance training ($/student-week)

CMTF Cost of maintenance facilities

CMTT Cost of maintenance training

CMTTD Cost of maintenance training data

CMTTF Cost of maintenance training facilities

CP Production cost

CPC Construction cost

CPCI Inventory Warehouse acquisition cost

CPCM Maintenance facilities acquisition cost

CPCP Production facilities cost

CPCT Test facilities cost

CPD System/Product Distribution costs

 108

CPDI Cost of inventory in warehouses

CPDM Cost of marketing and sales

CPDP Cost of packaging

CPDT Cost of transportation and traffic management

CPL Cost of initial logistic support

CPLD Cost of technical data preparation

CPLI Initial inventory management cost

CPLM Logistic program management cost

CPLP Cost of provisioning

CPLS Initial spare/repair part material cost

CPLT Cost of initial training and training equipment

CPLX Acquisition cost of operational test and support equipment

CPLY Initial transportation and handling cost

CPM Production/Construction management cost

CPP System Production costs

CPPH Cost of Hardware Components

CPPHI Cost of Hardware Integration

CPPHII Integration of components

CPPHIQ Quality control of integration process

CPPHIT Inspection and test of integrated unit

CPPHP Make/Buy Partition

CPPHPI Development costs associated with hardware produced in-house

CPPHPII Industrial Engineering costs

CPPHPIIC Cost of production control

CPPHPIIE Cost of methods engineering

CPPHPIIM Cost of manufacturing engineering

CPPHPIIP Cost of plant engineering

CPPHPIIS Cost of sustaining engineering

CPPHPIP Production costs

CPPHPIPN Nonrecurring manufacturing costs

CPPHPIPR Recurring manufacturing costs

CPPHPIQ Quality Control costs

CPPHPIQA Quality assurance cost

CPPHPIQCi Cost of qualification test i

 109

CPPHPIQSi Cost of production sampling test i

CPPHPP Development costs associated with hardware procured from a vendor
or subcontracted out

CPPI Cost of System Integration

CPPII Integration of components

CPPIT Inspection and test of integrated unit

CPPS Cost of Software Components

CPPSI Cost of Software Integration

CPPSII Integration of components

CPPSIT Inspection and test of integrated unit

CPPSP Make/Buy Partition

CPPSPI Costs associated with the duplication of software implemented
in-house

CPPSPP Acquisition costs associated with software procured from a vendor or
subcontracted out

CPPSPPN Networking Capabilities

CPPSPPP Procurement Costs

CPPSPPS Site License Agreement

CPT Printing of system documentation

CR Research and Development cost

CRD Hardware/Software development partition

CRDH Development costs associated with the hardware portion of the
project

CRDHC Design Completion

CRDHI Hardware Integration

CRDHID Documentation costs associated with integrated hardware

CRDHIDI Costs of compiling in-house documentation

CRDHIDL Costs of establishing documentation library

CRDHIDP Costs of compiling vendor documentation

CRDHII Costs associated with integration of hardware components

CRDHP Hardware make/buy partition

CRDHPI Development costs associated with hardware produced in-house

CRDHPP Development costs associated with hardware procured from a vendor
or subcontracted out

CRDHPPE Evaluation of hardware procured from vendor

CRDHPPEP Product Evaluation of hardware procured from vendor

 110

CRDHPPEV Vendor Evaluation of hardware procured from vendor

CRDHPPU Unit Costs of hardware procured from vendor

CRDHT Hardware Test and Evaluation

CRDS Development costs associated with the software portion of the
project

CRDSD Software Design costs

CRDSI Software Integration costs

CRDSID Documentation costs associated with software

CRDSIDI Costs of compiling in-house documentation

CRDSIDL Costs of establishing documentation library

CRDSIDP Costs of compiling vendor documentation

CRDSII Costs associated with integration of software subsystems

CRDSP Software make/buy partition

CRDSPI Development costs associated with software produced in-house

CRDSPP Development costs associated with software procured from a vendor
or subcontracted out

CRDSPPE Evaluation of software procured from vendor

CRDSPPEP Product Evaluation of software procured from vendor

CRDSPPEV Vendor Evaluation of software procured from vendor

CRDSPPT Training Costs for software procured from vendor

CRDSPPV Vendor Fees for software procured from vendor

CRDSPPVN Networking Capabilities for software procured from vendor

CRDSPPVP Procurement Costs for software procured from vendor

CRDSPPVS Site License Agreement for software procured from vendor

CRDST Software Test and Evaluation costs

CREC Reclamation value

CRF Functional Specification of microprocessor system

CRI Integration and Testing

CRID Cost of integrating and archiving all documentation

CRII Cost of Integration of hardware and software

CRIT Cost of System Test and Evaluation

CRM System/Product management cost

CRP Product Planning cost

CRT Integrated Testing

CU Cost of utilities ($/site)

 111

FC Condemnation factor

QA Quantity of purchase orders

QH Quantity of i items in the inventory

QM Quantity of i items required or demand

QMS Quantity of maintenance students

TT Duration of training program (weeks)

