CPSC 421
Database Management Systems

Lecture 10:
Embedded SQL

* Some material adapted from R. Ramakrishnan, L. Delcambre, and B. Ludaescher




Basic Database Architecture

[ Web Forms ] [ Application Front Ends ] [ SQL Interface ]
\ SQL Commands /
Y]
DBMS | Plan Executor | | Parser |
Query
_ Evaluation
| Operator Evaluator | | Optimizer | Engine
W
> File and Access Methods |<—>
Transaction l,
Manager
T > Buffer Manager < > X
Manager
Lock l,
Manager )
< > Disk Space Manager E SR,
Concurrency Control

System

Inde>LFiIes
Catalog

Data Files %

Embedded SQL

The majority of SQL is generated from software
applications through “Embedded SOL”...

* Embedded SQL allows data from a DBMS to be
accessed from within a regular software program

* Embedded SQL programs can
— Convert/modify data before it is presented to users
— Control what data is visible to users

— Generate SQL dynamically based on user preferences




Embedded SQL

* SQL commands can be called from within a host language
such as C/C++, .NET, PHP, Java, ...

— Typically provided through a set of libraries or modules
— Includes some type of statements to connect to the right database

— SQL statements can refer to host variables ... the regular variables in
your program (to pass parameters to queries)

* Because SQL (and the relational model) are often very
different than the host language

— The use of SQL in the language may not be “natural”

— This means that it can be difficult to integrate records/relations with
the data structures and constructs provided by the language

— This is often referred to as the “impedance mismatch” problem

Embedded SQL

* SQL query results are often large (multi-) sets of
records

* Most languages cannot efficiently (or practically)
represent or hold typical query results

* To address this, SQL supports a mechanism called a
“cursor” for accessing query results

— Cursors are somewhat similar to standard |O stream APIs

— As well as “iterators” ...




Cursors

* Cursors can be declared on a relation or query
statement (which generates a relation)

* Like an 1O stream (or iterator) ... we can
— open a cursor
— (repeatedly) fetch records from a cursor
— move the cursor to a new location
— determine if all tuples have been retrieved

— modify or delete a tuple pointed to by a cursor

Cursors

» Capabilities vary from one DBMS to another
— Move forward only
— Move forward or backward one row at a time
— Move to arbitrary locations
— What are some advantages/disadvantages?
* Cursor placement
— A cursor is placed BEFORE the first row of the result

— Special “end of result” value (like EOF) is used to denote
when past the last row




Embedded SQL implementations

* We will look at two different approaches for
Embedded SQL

— Using SQL in a scripting language (PHP)
— An API-based approach for C (for mysq|

Example Schema

* Suppose we want to track products and categories
for a retailer

Products(ProductID : int, CategoryID : int, ProductName : string,
UnitPrice : currency)

Categories(CategoryID : int, CategoryName : string)

Products.CategorylD REFERENCES Categories.CategoryID

e BTW, are these tables “normalized”, i.e.,in BCNF?




Embedded SQL in PHP

* Another (common) approach is to use a library (i.e.,
predefined set of function calls)

* PHP uses this approach

— along with many other languages (including Java) ...

— Each DBMS provides a different library (e.g., we will look
at the MySQL one; PostgreSQL has its own, etc.)

A Quick Note on PHP

* PHP is a general-purpose scripting language ...

— it is similar to other (procedural) scripting languages like
Perl, tcsh, bash, python, etc.

— it is primarily used as a scripting language for web
development since it can be easily embedded with HTML

— ... and provides useful functions for building web
applications

— this makes it easy to create web applications that require
access to back-end databases

— there are lots of resources, tutorials, and examples for PHP
on the web




Embedded SQL in PHP

* First we have to connect to a database

<?php
Shost = ‘localhost’;
Suser = ‘bowers’;
Spw = ‘secret’;
Sdb = ‘products’;
mysql_connect(Shost, Suser, Spw)

or die(mysql_error());

mysql_select db(Sdb);

>

* All PHP scripts are enclosed in <?php ... >

Embedded SQL in PHP

* Now that we are connected, we can query the DB

... connecttodb ... The Sresults variable is a
<html> handle to a cursor
<body>
<h2>Product names and prices</h2>
<?php

Ssql_stmt = “SELECT P.ProductName, P.UnitPrice
FROM Products P, Categories C
WHERE P.CategoryName = ‘Beverages’ AND
P.CategoryID = C.CategoryID
ORDER BY P.UnitPrice”;
Sresults = mysqgl_query(Ssql_stmt)
or die(‘Invalid query: ‘. mysgl_error());




Embedded SQL in PHP

* And retrieve and display the results of the query

while(Srow = mysql_fetch row(Sresults)) {
list(Sproduct_name, Sunit_price) = Srow;
print “Sproduct_name, Sunit_price <br/>";

}

mysql_close();

>
The Sresults variable is a
</body>
/ y handle to a cursor
</html>

Embedded SQL in PHP

A number of helper functions are provided ...

# get the number of rows of a result
Snum_rows = mysqgl_num_rows(Sresult);
print “The query returned ” . Snum_rows . “ results\n”;
# list the databases (for the current connection)
Sdatabases = mysql_list_dbs();
Sdbs = mysql_num_rows(Sdatabases);
for(Si = 0; Si < Sdbs; Si++)
print mysql_db_name(Sdatabases, Si) . “\n”;
# list the tables
Stables = mysq|_list_tables(Sdb);
Snum_tables = mysql_num_rows(Stables);
for(Si = 0; Si < Snum_tables; Si++)
print mysql_tablename(Stables, Si) . “\n”;
# establish multiple connections
Sconnectl = mysqgl_connect(Shostnamel, Suserl, Spw1);
Sconnect2 = mysqgl_connect(Shostname2, Suser2, Spw2);




Embedded SQL in PHP

* For more info on PHP ...
— http://www.php.net

— http://www.w3schools.com/PHP/

— http://www.php.net/mysql/

— Many other language bindings besides MySQL

— Warning: | haven’t tried using PHP w/ MySQL on ada!
— Both are installed though ...

Embedded MySQL in C
* MySQL provides a CAPI ...

— A different approach than using special preprocessing macros as
before
— Warning: | haven’t tried this on ada

¢ Connecting to MySQL

#include “/usr/include/mysql/mysql.h”
int main() {
MYSQL * mysql;
MYSQL_RES * result;
MYSQL_ROW row; Port, Socket, Client Flag
mysql_init(mysql); ——

mysgl_real_connect(mysql, host, user, password, db, 0, NULL, 0);




Embedded MySQL in C
* Querying a MySQL database

mysql_query(mysql, “SELECT * FROM ...”);
result = mysql_store_result(mysql); // create cursor
while(row = mysql_fetch_row(result)) {
... print results as row[0], row[1], ...
}
mysql_free_result(result);
mysql_close(mysql);
return O;

Embedded MySQL in C
* Compiling ...

gcc prog.c —l/usr/include/mysql —L/usr/lib/mysq|
-Imysqlclient -1m -1z

* The basic idea is to compile with the specific mysq|
libraries ... as opposed to using the precompiler

10



Other Embedded SQL Solutions
* ODBC — Open Database Connectivity

— Older standard, proposed by Microsoft but driven by the
database community

— A number of vendors (Oracle, etc.) make ODBC drivers available

* JDBC —Java Database Connectivity

Similar to ODBC but for Java

Also, many vendors provide drivers

Provides a single Java API for accessing any database that
supports JDBC

This differs than, e.g., PHP, where each vendor has a different
set of API calls (pg_connect, etc.)

Database Language Commands

« DDL

— “Data Definition Language”
— Schema-level commands

- DML

— “Data Manipulation Language”
— Row-level commands

11



DDL - Data Definition Language

* Create, edit, or delete database objects
— Tables
— Stored Procedures
— Data Types
— NOT ROWS!

* Drop table:
DROP TABLE Patient;

* Create table:
CREATE TABLE Patient ( ... );

DDL - Data Definition Language

* Alter table:
ALTER TABLE Patient
* Plus any of the following:
[ADD COLUMN]
[ALTER COLUMN]
[DROP COLUMN]
[ADD CONSTRAINT]
[DROP CONSTRAINT]

12



DML - Data Manipulation Language
* Inserting, updating, or deleting rows
* Deleting rows:

DELETE FROM Patient

WHERE FirstName LIKE ‘B%’;

* Note:This will potentially delete multiple patients!

DML - Data Manipulation Language

* Inserting rows:
INSERT INTO Patient (ID, FirstName, LastName)
VALUES (4, ‘Sue’, ‘Smith’), (6, John’,‘Jones’);

INSERT INTO Patient (ID, FirstName, DateOfBirth)
SELECT ID, Fname, DOB

FROM Transfers

WHERE Status = [;

— This will insert a patient for each row returned from the
query

13



DML - Data Manipulation Language

* Updating rows:

UPDATE TABLE Patient
SET FirstName = ‘Bob’,

DateOfBirth = AddDays(DateOfBirth, I)
WHERE ID = 555;

— This will change the FirstName and DateOfBirth for the
patient with ID 555.

14



