
Understanding the CAP Theorem

In this ar�cle, we take an exploratory look at one of the more important ideas in the field

of data engineering, and where it stands today.

by

Akhil Mehra

The CAP theorem is a tool used to makes system designers aware of the trade-offs while designing

networked shared-data systems. CAP has influenced the design of many distributed data systems. It made

designers aware of a wide range of tradeoffs to consider while designing distributed data systems. Over the

years, the CAP theorem has been a widely misunderstood tool used to categorize databases. There is much

misinforma$on floa$ng around about CAP. Most blog posts on CAP are historical and possibly incorrect.

It is important to understand CAP so that you can iden�fy the misinforma�on around it.

The CAP theorem applies to distributed systems that store state. Eric Brewer, at the 2000 Symposium on

Principles of Distributed Compu$ng (PODC), conjectured that in any networked shared-data system there is

a fundamental trade-off between consistency, availability, and par$$on tolerance. In 2002, Seth Gilbert and

Nancy Lynch of MIT published a formal proof of Brewer's conjecture. The theorem states that networked

shared-data systems can only guarantee/strongly support two of the following three proper$es:

Consistency - A guarantee that every node in a distributed cluster returns the same, most recent,

successful write. Consistency refers to every client having the same view of the data. There are

various types of consistency models. Consistency in CAP (used to prove the theorem) refers to

linearizability or sequen$al consistency, a very strong form of consistency.

Availability - Every non-failing node returns a response for all read and write requests in a reasonable

amount of $me. The key word here is every. To be available, every node on (either side of a network

par$$on) must be able to respond in a reasonable amount of $me.

Par��on Tolerant - The system con$nues to func$on and upholds its consistency guarantees in spite

of network par$$ons. Network par$$ons are a fact of life. Distributed systems guaranteeing par$$on

tolerance can gracefully recover from par$$ons once the par$$on heals.

The C and A in ACID represent different concepts than C and in A in the CAP theorem.

The CAP theorem categorizes systems into three categories:

CP (Consistent and Par$$on Tolerant) - At first glance, the CP category is confusing, i.e., a system that

is consistent and par$$on tolerant but never available. CP is referring to a category of systems where

availability is sacrificed only in the case of a network par$$on.

CA (Consistent and Available) - CA systems are consistent and available systems in the absence of any

network par$$on. O7en a single node's DB servers are categorized as CA systems. Single node DB

servers do not need to deal with par$$on tolerance and are thus considered CA systems. The only

hole in this theory is that single node DB systems are not a network of shared data systems and thus

do not fall under the preview of CAP. [^11]

AP (Available and Par$$on Tolerant) - These are systems that are available and par$$on tolerant but

cannot guarantee consistency.

A Venn diagram or a triangle is frequently used to visualize the CAP

theorem. Systems fall into the three categories that depicted using the

intersec$ng circles.

The part where all three sec$ons intersect is white because it is impossible

to have all three proper$es in networked shared-data systems. A Venn

diagram or a triangle is an incorrect visualiza�on of the CAP. Any CAP

theorem visualiza$on such as a triangle or a Venn diagram is misleading.

The correct way to think about CAP is that in case of a network par��on (a

rare occurrence) one needs to choose between availability and consistency.

In any networked shared-data systems par$$on tolerance is a must.

Network par$$ons and dropped messages are a fact of life and must be

handled appropriately. Consequently, system designers must choose

between consistency and availability. Simplis$cally speaking, a network par$$on forces designers to either

choose perfect consistency or perfect availability. Picking consistency means not being able to answer a

client's query as the system cannot guarantee to return the most recent write. This sacrifices availability.

Network par$$on forces nonfailing nodes to reject clients' requests as these nodes cannot guarantee

consistent data. At the opposite end of the spectrum, being available means being able to respond to a

client's request but the system cannot guarantee consistency, i.e., the most recent value wri=en. Available

systems provide the best possible answer under the given circumstance.

During normal opera�on (lack of network par��on) the CAP theorem does not impose constraints on

availability or consistency.

The CAP theorem is responsible for insgang the discussion about the various tradeoffs in a distributed

shared data system. It has played a pivotal role in increasing our understanding of shared data systems.

Nonetheless, the CAP theorem is cri$cized for being too simplis$c and o7en misleading. Over a decade

a7er the release of the CAP theorem, Brewer acknowledges that the CAP theorem oversimplified the

choices available in the event of a network par$$on. According to Brewer, the CAP theorem prohibits only a

“$ny part of the design space: perfect availability and consistency in the presence of par$$ons, which are

rare." System designers have a broad range of op$ons for dealing and recovering from network par$$ons.

The goal of every system must be to “maximize combina$ons of consistency and availability that make

sense for the specific applica$on.”

References:

Brewer's conjecture and the feasibility of consistent, available, par$$on-tolerant web services1.

CAP Twelve Years Later: How the "Rules" Have Changed2.

Please stop calling databases CP or AP3.

